电磁机构中非线性永磁体分布参数模型的研究
本文关键词:电磁机构中非线性永磁体分布参数模型的研究 出处:《福州大学》2014年硕士论文 论文类型:学位论文
更多相关文章: 永磁接触器 永磁分块 磁路模型 静态吸力 动态吸力
【摘要】:永磁机构不仅能够实现传统电磁机构的全部功能,还具有高可靠、高节能、抗晃电以及无温升等诸多优点,因而得到了越来越多的普及。电磁机构能够稳定可靠的工作,关键在于吸力与反力特性的配合。目前,基于传统的永磁集总参数模型构造系统等效磁路的方法,求解电磁机构吸力特性的精度还比较低。针对永磁集总参数等效磁路模型存在的吸力求解精度较低的问题,本文通过Ansoft软件对电磁机构永磁体磁场分布进行仿真分析,结果表明由于存在漏磁效应和端面气隙扩散磁通,使得永磁体内部磁感应强度分布并不均匀。为了提高电磁吸力的求解精度,提出了根据永磁体内磁场疏密不同的分布,对永磁体沿磁化方向和垂直于磁化方向进行分块的永磁体分布参数模型,并通过永磁接触器实例进行分析计算并得到其静态吸力值。将永磁体分布参数模型静态吸力特性计算值与永磁体集总参数模型的计算值、有限元仿真值以及实测值进行对比分析,表明采用永磁体分块的分布参数磁路模型可以获得较高的计算精度。在静态吸力特性求解的基础上,本文提出根据不同励磁电流情况获得的动铁心静态吸力曲线簇以及仿真得到的静态线圈磁链曲线簇,结合永磁接触器动态微分方程组,求解永磁接触器动铁心的动态特性。该方法获得的动铁心位移动态数据与以高速摄像机为核心的电磁机构动态检测平台测量得到的动铁心位移动态数据相比,具有较高的一致性和求解精度,验证了所提出永磁体分布参数模型在求解永磁机构动态过程时的有效性和合理性。对动铁心位移-时间曲线做进一步的数据处理,继而又可得到永磁接触器的动态吸力特性。电磁机构中只有动态吸力特性才是吸反力特性配合的真实过程。研究表明,基于永磁分布参数模型在计算动铁心静态吸力和动态吸力方面可以获得较高的计算精度,且具有建模方便、参数易修改、计算快速等优点,本文的研究成果为永磁机构设计和优化分析提供了一种有效的方法。
[Abstract]:Permanent magnet mechanism not only can realize all functions of the traditional electromagnetic mechanism, also has high reliability, high energy efficiency, the advantages of anti-interference electricity and no temperature rise, which has been more and more popular. The electromagnetic mechanism can work stably and reliably, the key lies in the coordination and reaction characteristics of suction. At present, the traditional method of permanent magnet the lumped parameter model is constructed based on the equivalent magnetic circuit system, suction characteristic of solving the electromagnetic mechanism accuracy is relatively low. The accuracy of permanent magnet suction lumped parameter equivalent circuit model has the problem of low, through the Ansoft software of the electromagnetic mechanism of permanent magnet magnetic field distribution simulation analysis. The results show that due to the existence of magnetic flux leakage effect and end the air gap flux of the permanent magnet inside the magnetic flux density distribution is not uniform. In order to improve the accuracy of electromagnetic force, put forward according to the permanent magnet in the magnetic field density The different distribution of the permanent magnet magnetization direction along and perpendicular to the direction of magnetization of the permanent magnet block distribution parameter model, and through the permanent magnet contactor was analyzed and calculated to get the static value. The permanent magnet distribution static characteristic parameters of model calculation of model parameters and the permanent magnet set value, Co. element simulation value and measured value were analyzed, show that the distributed parameter model of a permanent magnet magnetic circuit block can get higher accuracy. Based on the static characteristic is obtained, according to the different excitation current static coil flux linkage curves obtained static force curves and core simulation is presented in this paper, combined with the permanent magnetic contactor dynamic differential equations, the dynamic characteristics of permanent magnet contactor core solution. The method of obtaining the dynamic iron core displacement dynamic data with high speed camera Electromagnetic mechanism dynamic detection platform measuring machine as the core of the dynamic core displacement dynamic data compared with high consistency and accuracy, verify that the proposed distributed parameter model of permanent magnet permanent magnet mechanism in solving the dynamic process is effective and reasonable. Further data processing of moving iron heart displacement time curve then, get dynamic suction characteristic of permanent magnet contactor electromagnetic mechanism. Only dynamic force characteristic is the real process with the suction force characteristic of permanent magnet. The results show that the distributed parameter model in the calculation of dynamic state and dynamic suction suction iron Manila can get higher accuracy based, and has convenient modeling, parameter easy to modify, fast calculation, the results of this research provide an effective method for the design and optimization of the permanent magnetic mechanism.
【学位授予单位】:福州大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM572
【相似文献】
相关期刊论文 前10条
1 启明;超导永磁体[J];金属功能材料;2000年03期
2 ;永磁体及其相关的研究发展史[J];金属功能材料;2001年02期
3 启明;永磁体的发展[J];金属功能材料;2002年05期
4 刘孟陶,张新元;医用永磁体实行标准化生产的雏议[J];生物磁学;2002年03期
5 钟培全;稀土元素-铁-硼永磁体及其制备方法[J];稀有金属快报;2003年02期
6 齐凤春;;永磁体在医疗上的应用[J];仪表材料;1975年01期
7 齐风春;;永磁体标准化展望[J];仪表材料;1975年06期
8 齐凤春;永磁体稳定性问题续谈[J];电测与仪表;1977年02期
9 ;关于钐镨钴永磁体的稳定性、使用价值和大规模生产[J];磁性材料及器件;1977年01期
10 蒋辉瑜;傅应生;林彩东;;铈钴铜铁永磁体的应用[J];仪表材料;1980年06期
相关会议论文 前10条
1 翟福强;孙爱芝;关媛媛;陈云志;;开放磁路下永磁体外磁场磁性能的研究[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年
2 李增峰;谈萍;张晗亮;汤慧萍;刘海燕;黄瑜;;粘结永磁体发展现状[A];2006年全国功能材料学术年会专辑[C];2006年
3 徐克仁;李蔚;周慧颖;康玉红;;永磁体的开路剩磁及其临床意义[A];中国生物医学工程学会医学物理分会第十次学术年会、中华医学会医学工程学分会第一次医疗设备科学管理研讨会论文集[C];1998年
4 励轲;陈立群;;矩形永磁体磁场中压电悬臂梁的动力学建模[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
5 武海澄;杨仕友;李t,
本文编号:1386647
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1386647.html