当前位置:主页 > 科技论文 > 电力论文 >

基于双谐振耦合的能量与信号传输技术研究

发布时间:2018-01-08 17:40

  本文关键词:基于双谐振耦合的能量与信号传输技术研究 出处:《哈尔滨工业大学》2014年硕士论文 论文类型:学位论文


  更多相关文章: 双谐振耦合 无线能量传输 信号传输 等效电感 传输因子


【摘要】:无线能量传输技术在很多领域已经出现了商品化应用,在如人体植入式设备,无线传感器网络等应用场合,往往需要信号的同时传输,以传递控制指令,反馈系统状态等,具有实际的应用意义本课题采用双谐振耦合结构,该结构可以提供两个分开的频带分别用作能量传输和信号传输,,在保证能量传输性能的基础上,实现了较快的数据传输速率 首先,根据无线能量传输与近场磁通信技术的理论,将能量传输的功率与效率,信号传输的功率响应时间与带宽作为本文衡量传输性能的主要参数,分析了这些参数与电路品质因数Q的关系 其次,对单端双谐振电路进行了分析,提出了等效电感的概念,用于计算双谐振电路的带宽与响应时间提出了传输因子的概念,并将传输因子代替品质因数作为衡量双谐振电路能量与信号传输性能的参数,得到了并联线圈更适合作为耦合线圈的结论通过分析,双谐振电路中的电容与电感取值,会直接影响到两个谐振点的位置以及传输因子的大小,是系统设计中最重要的参数利用互感耦合模型对双谐振耦合结构进行了建模,并利用数学计算与电路仿真分析了电路中参数变化对传输性能的影响 再次,完成了整个传输系统的硬件设计选择全桥逆变电路作为能量激励源,采用利兹线绕制线圈,采用二进制振幅键控作为信号调制方案,采用电感耦合作为信号的加载方案 最后,对整个双谐振耦合结构传输系统进行了实验与分析 针对能量传输主要分析了不同传输距离,不同接收端负载对系统的输出功率和传输效率的影响在负载值小于10,传输距离小于120mm时可以实现70%以上的整体传输效率 针对信号传输,通过电感耦合能够将信号有效的加载,并且不会对能量传输产生影响实现了信号的分离以及调制解调通过分析,系统的响应时间决定了能够实现的最大数据传输速率在负载为1.31距离为122mm时,可实现最高56kHz的数据传输速率
[Abstract]:Wireless energy transmission technology has been commercialized in many fields, such as human implanted devices, wireless sensor networks and other applications, it is often necessary to transmit signals at the same time, in order to transfer control instructions. Feedback system states and so on, which has practical application significance. This subject adopts double resonant coupling structure, this structure can provide two separate frequency bands for energy transmission and signal transmission respectively. On the basis of guaranteeing the performance of energy transmission, the fast data transmission rate is realized. Firstly, according to the theory of wireless energy transmission and near-field magnetic communication technology, the power and efficiency of energy transmission, the power response time and bandwidth of signal transmission are taken as the main parameters to measure the transmission performance in this paper. The relationship between these parameters and circuit quality factor Q is analyzed. Secondly, the concept of equivalent inductance is put forward, which is used to calculate the bandwidth and response time of double resonant circuit. The transmission factor is used instead of the quality factor as the parameter to measure the energy and signal transmission performance of the double resonant circuit. The conclusion that the parallel coil is more suitable as the coupling coil is analyzed. The capacitance and inductance in the double resonant circuit will directly affect the position of the two resonance points and the size of the transmission factor. It is the most important parameter in the design of the system. The mutual inductance coupling model is used to model the double resonant coupling structure, and the influence of the parameter change on the transmission performance is analyzed by mathematical calculation and circuit simulation. Thirdly, the hardware design of the whole transmission system is completed. The full-bridge inverter circuit is chosen as the energy excitation source, the Leeds wire winding coil is used, and the binary amplitude keying is used as the signal modulation scheme. Loading Scheme using Inductance Coupling as signal Finally, the experiment and analysis of the whole transmission system with dual resonant coupling structure are carried out. According to the energy transmission, the main analysis of the different transmission distance, different receiver load on the system output power and transmission efficiency in the load value is less than 10. The overall transmission efficiency above 70% can be realized when the transmission distance is less than 120mm. For signal transmission, the signal can be loaded effectively by inductive coupling, and the signal separation and modulation and demodulation can be realized by analysis without any influence on energy transmission. The response time of the system determines that the maximum data transmission rate can be achieved at a maximum data rate of 56kHz when the load is 1.31 mm and the distance is 122 mm.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM724

【参考文献】

相关期刊论文 前9条

1 潘康生;;T型去耦等效电路[J];安庆师范学院学报(自然科学版);2005年04期

2 周晓东,张河;用于引信的能量和信息非接触同步传输技术[J];兵工学报;2003年03期

3 李长生;张合;;基于磁共振的引信用能量和信息无线同步传输方法研究[J];兵工学报;2011年05期

4 周锦锋;孙跃;苏玉刚;戴欣;翟渊;;感应耦合电能与信号同步传输技术[J];重庆工学院学报(自然科学版);2009年04期

5 武瑛,严陆光,黄常纲,徐善纲;新型无接触电能传输系统的性能分析[J];电工电能新技术;2003年04期

6 孙跃;王琛琛;唐春森;戴欣;王智慧;;CPT系统能量与信号混合传输技术[J];电工电能新技术;2010年04期

7 亢宝位;;IGBT发展概述[J];电力电子;2006年05期

8 武瑛,严陆光,徐善纲;新型无接触电能传输系统的稳定性分析[J];中国电机工程学报;2004年05期

9 傅文珍;张波;丘东元;王伟;;自谐振线圈耦合式电能无线传输的最大效率分析与设计[J];中国电机工程学报;2009年18期



本文编号:1398089

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1398089.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8ec3f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com