用于直流微网的风光接入拓扑及其控制
发布时间:2018-01-15 06:04
本文关键词:用于直流微网的风光接入拓扑及其控制 出处:《浙江大学》2014年硕士论文 论文类型:学位论文
更多相关文章: 风力发电控制 高增益拓扑 层次控制 能量管理
【摘要】:随着能源危机和环境危机的日益加剧,世界各国都开始关注清洁能源的发展和可再生能源的利用,以风能和太阳能为代表的分布式能源已逐渐成为学术界和工业界的研究热点[1-2]。 但由于分布式发电空间分布的广泛性和时间分布的随机性,当分布式发电渗透率逐渐升高时,现有的电力系统在结构和设计理念上都面临着很大的挑战。为解决这一实际问题,美国学者于本世纪初首先提出了微网的概念。近年来,对微网的研究已成为国内外电气工程领域的一个热点问题[3-5]。本论文基于直流架构的微网系统,主要研究用于直流微网系统的全功率风力发电控制策略、高增益光伏接入拓扑以及系统控制与能量管理机制。 1.在直流微网系统风力发电单元,本论文利用反电势估算法原理,实现了基于内置观测器的永磁电机位置估测矢量控制策略。在此基础上采用风机内在功率特性MPPT策略,实现了最大风能捕获和功率管理,并利用李雅普诺夫第一定理证明了这种策略在整个工作范围内的稳定性。同时,搭建了一套5kW永磁电机实验测试平台,对此控制策略的有效性进行了实验验证。 2.在直流微网系统光伏发电单元,在总结现有高增益光伏接入拓扑的基础之上,提出了一种基于耦合电感倍压结构的有源箝位Boost高增益变流器拓扑结构。利用耦合电感倍压结构引入了一个新的升压控制自由度,实现了在常规占空比条件下的高升压。同时,又利用耦合电感中的原边漏感实现了主开关管的ZVS软开通。实现了将光伏组件输出的较低直流电压高效率地提升至满足并网单元需求的直流母线电压的转换任务。在实验室制作了一台实验样机,验证了此新型变流器在光伏发电应用场合的有效性。 3.根据直流微网系统的控制要求,本论文选择层次控制为整个系统的控制架构方案,并相应提出了变流器控制层,母线控制层以及调度管理层的层次控制结构。在变流器控制层中,为各变流器建立了简化模型。在母线控制层中,介绍了系统中各个单元模块的控制算法,以及根据母线电压协调各单元运行的机制,保证系统稳定运行。最后,在实验室搭建了一套直流微网测试平台,通过多组实验验证了理论分析的正确性和可靠性。
[Abstract]:With the increasing of energy crisis and environmental crisis, countries all over the world begin to pay attention to the development of clean energy and the use of renewable energy. Distributed energy, represented by wind and solar energy, has gradually become a hot research topic in academia and industry. [1-2]. However, due to the spatial distribution of distributed generation and the randomness of time distribution, when the permeability of distributed generation increases gradually. The existing power system is facing great challenges in structure and design concept. In order to solve this practical problem, American scholars first put forward the concept of microgrid at the beginning of this century. The research of microgrid has become a hot issue in the field of electrical engineering at home and abroad [In this thesis, the full power wind power generation control strategy, high gain photovoltaic access topology, system control and energy management mechanism for DC microgrid systems are studied. 1. In the wind power generation unit of DC microgrid system, the principle of inverse EMF estimation is used in this paper. The position estimation vector control strategy of permanent magnet motor based on built-in observer is realized, and based on this, the maximum wind energy capture and power management are realized by adopting the inherent power characteristic of fan MPPT strategy. The stability of the strategy in the whole work range is proved by using Lyapunov's first principle. At the same time, a test platform of 5kW permanent magnet motor is built. The effectiveness of the control strategy is verified experimentally. 2. On the basis of summarizing the existing high gain photovoltaic access topology in DC microgrid system photovoltaic power generation unit. An active clamped Boost high gain converter topology based on coupled inductance doubling structure is proposed. A new boost control degree of freedom is introduced by using the coupled inductance double voltage structure. At the same time, the high voltage booster is realized under the condition of normal duty cycle. The ZVS soft switch of the main switch is realized by using the original side leakage inductance in the coupling inductor, and the conversion of the lower DC voltage output from the photovoltaic module to the DC bus voltage which meets the needs of the grid-connected unit is realized with high efficiency. A prototype was made in the laboratory. The validity of the new converter in photovoltaic applications is verified. 3. According to the control requirements of DC microgrid system, this paper selects hierarchical control as the control architecture of the whole system, and puts forward the converter control layer accordingly. In the converter control layer, a simplified model is established for each converter. In the bus control layer, the control algorithm of each unit module in the system is introduced. And according to the bus voltage coordination of each unit operation mechanism to ensure the stable operation of the system. Finally, a set of DC microgrid test platform is built in the laboratory. The correctness and reliability of the theoretical analysis are verified by many experiments.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM614
【参考文献】
相关期刊论文 前4条
1 米建华;王卓昆;;电力行业节能现状与举措[J];中国科技投资;2006年09期
2 姜鑫;陈敏;徐君;徐德鸿;;实验室模拟大转动惯量风力机研究[J];电力电子技术;2011年07期
3 刘助仁;;新能源:缓解能源短缺和环境污染的希望[J];国际技术经济研究;2007年04期
4 年珩;李嘉文;万中奇;;基于参数在线辨识的永磁风力发电机无位置传感器控制技术[J];中国电机工程学报;2012年12期
相关博士学位论文 前6条
1 张颖媛;微网系统的运行优化与能量管理研究[D];合肥工业大学;2011年
2 汪令祥;永磁同步直驱型全功率风机变流器及其控制[D];合肥工业大学;2011年
3 徐立中;微网能量优化管理若干问题研究[D];浙江大学;2011年
4 肖朝霞;微网控制及运行特性分析[D];天津大学;2009年
5 王子辉;永磁同步电机全速度范围无位置传感器控制策略研究[D];浙江大学;2012年
6 赵一;耦合电感倍压单元高增益变流器拓扑形成方法研究[D];浙江大学;2012年
,本文编号:1427077
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1427077.html
教材专著