当前位置:主页 > 科技论文 > 电力论文 >

聚苯胺作为锂二次电池正极材料的研究

发布时间:2018-01-30 21:23

  本文关键词: 锂-聚苯胺电池 掺杂 正极材料 锂盐 比容量 出处:《哈尔滨工业大学》2014年硕士论文 论文类型:学位论文


【摘要】:PANi作为一种导电聚合物,以稳定的电化学性、易合成、低价格和环境友好的特性,在电池领域广受关注。本文分别以质子酸和锂盐作为掺杂剂,制备掺杂态聚苯胺并对其结构表征,确定了PANi中发生掺杂反应的活性点位置;根据电池充放电测试的反馈研究了掺杂阴离子种类、掺杂阴离子数量、隔膜种类、压力强度、正极片厚度、浸泡时间等因素对电池性能的影响,并对PANi的放大合成可行性进行初步探讨。 对PANi进行质子酸掺杂,通过电导率测试发现,近似绝缘的PANi经质子酸掺杂后,其导电性提升8个数量级,导电能力提高显著;掺杂盐酸PANi的XRD结果显示,掺杂质子酸后的PANi衍射峰形更加尖锐,其结晶度由掺杂前的8.20%增加到24.82%;在红外光谱中,C=N键的吸收峰由本征态中的1140cm-1移动到掺杂态的1109cm-1处,移动幅度最大且是谱图中的最强吸收峰,表明了发生在PANi醌式结构中的C=N上。同时,XRD、SEM结果显示在有机体系进行锂盐掺杂也可获得较高结晶度的PANi。此外XPS测试结果表明,掺杂锂盐后,,醌式结构中N原子的N1S峰强度明显下降,而阳离子自由基结构中N原子的N1S峰强度迅速增加,说明了锂盐掺杂反应发生在醌式结构中的N原子上。 通过观察PANi片在电解液中开裂溶胀现象,确定了EA和DMC作为电解液添加剂,对掺杂不同阴离子PANi性能的研究发现,掺杂ClO4-具有更良好的循环性能,预掺杂态PANi容量可达75mAh/g。通过设计四因素三水平正交试验,确定了反应时间6h,温度25℃,酸度1.5mol/L的最佳阴离子掺杂工艺。根据电池性能结果,确定了使用AGM和聚丙烯复合隔膜、浸泡48h、正极片厚度0.7-1.0mm、压力强度4MPa的最佳工艺条件。对PANi的放大合成和电池组装及测试进行了研究。利用SEM进行形貌观测发现,放大合成的PANi具有较好的结晶度,组装成的电池容量可达80mAh/g,组装成的电池充放过程超过80000min,容量在前40个循环内几乎不衰减。最后分析了目前二次电池的市场构成并计算了Li-PANi电池成本,以实验室合成PANi成本计算,每千克PANi成本在20元,价格优势明显。
[Abstract]:PANi as a conductive polymer, with electrochemical stability, easy synthesis, low price and environmental friendly characteristics, wide attention in the field of battery. In this paper, the proton acid and lithium salt as dopant, preparation of doped polyaniline and its structure characterization, determine the location of activity occurs in PANi doping reaction the battery charge and discharge test; according to the feedback of different dopants and doping amount of anion, diaphragm type, pressure strength, positive plate thickness, effect of soaking time and other factors on the performance of the battery and the PANi amplification can be explored for synthesis.
Proton acid doping on PANi by conductivity test found that the approximation of PANi insulation by protonic acid doping, the conductivity increased by 8 orders of magnitude, the conductivity increased significantly; doped PANi HCl XRD results showed that the PANi diffraction peaks of protonic acid after more sharp, the crystallinity by doping before 8.20% increased to 24.82%; in the infrared spectrum, C=N bond absorption peak at 1109cm-1 from the mobile 1140cm-1 eigenstates in the doped state to the biggest and strongest mobile spectrum figure of the absorption peak that occurred in the PANi quinoid structure of C=N. At the same time, the results show that the XRD, SEM lithium salt doping in organic system can obtain high crystallinity of PANi. and XPS test results show that the doped lithium salt, N1S peak intensity of N atom quinoid structure decreased significantly, while the N1S peak intensity of N atom radical cation in the structure increased rapidly, explained The doping reaction of lithium salt occurs on the N atom in the quinone structure.
Through the observation of PANi cracking swelling in the electrolyte, the EA and DMC as electrolyte additives on the properties of PANi doped with different anions found that doped ClO4- has better cycle performance, pre doped PANi capacity is 75mAh/g. through the design of four factors and three levels orthogonal test, to determine the reaction time 6h, temperature 25 the best anion doping process, acidity 1.5mol/L. According to the battery performance results, determine the use of AGM and polypropylene composite diaphragm for 48h, the positive plate thickness is 0.7-1.0mm, the optimum conditions of pressure strength of 4MPa. The PANi amplification of synthesis and assembly and test battery were studied. The morphology of observations by SEM amplification of PANi synthesis good crystallinity, battery capacity is 80mAh/g assembly, the assembly process of the battery charge and discharge capacity of more than 80000min, almost no decline in the first 40 cycles Finally, the market composition of the two battery is analyzed, and the cost of Li-PANi battery is calculated. The cost of PANi is 20 yuan per kilogram, and the price advantage is obvious. The cost is 20 yuan per kilogram.

【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM912

【参考文献】

相关期刊论文 前9条

1 林生岭;龙丹;陶楠楠;储艳文;郭寅丹;万勇;;聚苯胺的合成优化及其电化学性能研究[J];材料开发与应用;2010年06期

2 唐劲松,王宝忱,王佛松;聚苯胺的合成、结构、性能及应用[J];高分子材料科学与工程;1987年01期

3 曾幸荣,莫毅,杨卫,吴振耀,龚克成;碘掺杂聚苯胺的结构与性能[J];高分子材料科学与工程;1997年S1期

4 熊碧云;康海波;;电动车动力锂离子电池的现状与发展趋势[J];电源技术;2013年05期

5 於黄中,陈明光,黄河;不同类型的酸掺杂对聚苯胺结构和电导率的影响[J];华南理工大学学报(自然科学版);2003年05期

6 马利;刘昊;王成章;;聚苯胺的电致变色理论及应用[J];装备环境工程;2006年06期

7 王佛松;王利祥;景遐斌;;聚苯胺的掺杂反应[J];武汉大学学报(自然科学版);1993年06期

8 白咏梅;邱鹏;文中流;韩绍昌;;LiFePO_4/PANI复合材料的制备及电化学性能[J];中国有色金属学报;2010年08期

9 墨柯;Christophe Pillot;;全球二次电池及锂离子电池市场研究分析[J];新材料产业;2014年02期



本文编号:1477259

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1477259.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户aaf53***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com