当前位置:主页 > 科技论文 > 电力论文 >

锂离子电池SOC参数估算的研究

发布时间:2018-02-01 01:27

  本文关键词: 锂电池 SOC 卡尔曼滤波 强跟踪滤波器 出处:《天津大学》2014年硕士论文 论文类型:学位论文


【摘要】:锂离子电池作为一种新型能源形式,具有体积小、自放电率小、倍率放电性能好、绿色环保等一系列优点得到社会各界的认可和重视,被广泛应用于数码产品、电动汽车、军事、航天航空、储能等各个领域。稳定可靠的BMS能够提高锂离子电池的循环使用寿命、安全性、可靠性并节约成本。而准确估算电池的SOC值是BMS中最基本最重要的一个环节。 论文以天津某公司的太阳能路灯控制器为研究对象,建立了锰酸锂电池的二阶RC电池模型。通过大量放电-静置实验,对电池模型参数进行了辨识。在对常用的SOC算法分析的基础上,根据锂离子电池系统的特点及项目对SOC估算精度的要求,采用了ST EKF算法对电池的SOC进行估算,与其它算法相比,STEKF算法估算误差较小,精度较高,,满足项目对精度的要求。 搭建了基于DSP芯片的SOC实验系统,给出了各个功能模块的软件设计流程。最后对实际硬件系统进行测试,表明系统运行良好。
[Abstract]:As a new energy form, Li-ion battery has a series of advantages, such as small volume, small self-discharge rate, good discharge performance, green environmental protection and so on. It has been widely used in digital products. Electric vehicles, military, aerospace, energy storage and other fields. Stable and reliable BMS can improve the cycle life and safety of Li-ion batteries. Reliability and cost saving, and accurate estimation of battery SOC is the most basic and most important link in BMS. In this paper, the second-order RC battery model of LiMnO _ 4 battery is established with the solar lamp controller of a company in Tianjin as the research object, and a large number of discharge-static experiments are carried out. The parameters of the battery model are identified. Based on the analysis of the commonly used SOC algorithm, according to the characteristics of the lithium-ion battery system and the requirements for the accuracy of SOC estimation. The STEKF algorithm is used to estimate the SOC of the battery. Compared with other algorithms, the estimation error of the algorithm is smaller and the accuracy is higher. The SOC experimental system based on DSP chip is built, and the software design flow of each functional module is given. Finally, the actual hardware system is tested, which shows that the system is running well.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM912

【参考文献】

相关期刊论文 前1条

1 李德东;王振臣;郭小星;;基于模糊卡尔曼滤波的HEV氢镍电池SOC估计[J];电源技术;2011年02期



本文编号:1480538

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1480538.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e2da7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com