当前位置:主页 > 科技论文 > 电力论文 >

基于WAMS的电力系统扰动传播机理研究

发布时间:2018-02-04 10:46

  本文关键词: 扰动传播 WAMS 分段均匀模型 扰动到达时间 扰动定位 出处:《华北电力大学(北京)》2014年博士论文 论文类型:学位论文


【摘要】:扰动是破坏电网安全稳定运行的直接诱因,如何分析扰动影响的范围、程度进而进行安全控制对于提高电网安全水平具有重要作用。随着电网互联节点数量的不断增加,传统分析方法基于电磁波传递的系统动态方程,不能直接给出扰动空间传播信息,并且难以准确预测多机系统稳定性的问题。针对此问题,论文将空间信息引入描述系统动态的微分代数方程中,用机电波理论刻画扰动的时空传播机理。在揭示扰动机电波传递机理的基础上,应用实测PMU相量轨迹信息,辨识系统扰动类型、位置、发生时刻及机电波传递参数,以针对实际扰动和辨识出的机电波传播参数,预测系统扰动传播规律,提前采取安全控制措施。本论文的主要工作和创新点为:提出了适用于扰动传播研究的链式电网模型与实际电网空间框架结构模型。构建了发电机的转动惯量作用域并提出非均匀链式电网的分段均匀介质模型,推导了扰动传播方程和对应的解析解。在链式电网的基础上,提取了实际电网机电波传播特征,提出了沿传播路径逐级对称分布的转动惯量处理方法,构建了具有分段均匀参数的电网空间框架结构模型,并证明了所提模型的正确性。从频率的角度揭示了扰动在电网中传播的幅值、相位变化规律。提出波动传递函数以定量刻画机电波波幅、相位在离散惯量模型中的变化规律;分析了不同频率扰动信号的传播特性,提出了扰动传播的转折频率,揭示了频散现象和局部振荡现象与转折频率的定量关系,最终为基于WAMS的扰动辨识奠定理论基础。提出了一种基于WAMS数据的扰动在线定位方法。揭示了系统稳态时频率的短周期波动特性及扰动到达后的单调升降特性,提出了基于滑动数据窗的机电波到达时间判别函数及判断准则,采用Floyd算法构建了由不同故障点扰动传播时间组成的参考时间矩阵,利用扰动到达的时序特征提出了有序最小距离分类器辨识扰动位置。本算法大大缩小了搜索空间,能够满足在线应用的要求。提出了一种扰动到达时间预测算法,为基于扰动传播理论进行电网主动安全控制提供了重要决策信息。构建了框架结构模型对应的无向赋权图和以各段线路中机电波传播时间为权值的邻接矩阵。提出基于Dijkstra算法的扰动到达时间及最快传播路径搜索算法。同时,进一步分析了扰动传播中的正、负反射现象对机电波到达时间的影响机理,并提出了实测扰动到达门槛值的选择方法。
[Abstract]:Disturbance is the direct inducement to destroy the safe and stable operation of power grid. How to analyze the range of disturbance. The degree of security control plays an important role in improving the security level of power grid. With the increasing number of interconnected nodes, the traditional analysis method is based on the dynamic equation of electromagnetic wave transmission system. It is difficult to accurately predict the stability of multi-machine systems. In order to solve this problem, the spatial information is introduced into the differential algebraic equations to describe the dynamics of the system. On the basis of revealing the mechanism of electromechanical wave transmission of disturbance, the PMU phasor locus information is used to identify the disturbance type and position of the system. The time of occurrence and the parameters of electromechanical wave transmission are used to predict the disturbance propagation law of the system according to the actual disturbance and the identified electromechanical wave propagation parameters. Safety control measures should be taken in advance. The main work and innovation of this paper are as follows:. A chain power network model and a real grid spatial frame structure model are proposed for the study of disturbance propagation. The rotational inertia domain of generator is constructed and the piecewise uniform medium model of non-uniform chain power network is proposed. The perturbation propagation equation and the corresponding analytical solution are derived. Based on the chain power network, the characteristics of electromechanical wave propagation are extracted, and the rotational inertia processing method is proposed, which is distributed symmetrically step by step along the propagation path. The spatial frame structure model with piecewise uniform parameters is constructed, and the correctness of the proposed model is proved. The amplitude of disturbance propagating in the power network is revealed from the angle of frequency. The wave transfer function is proposed to describe the amplitude of electromechanical wave and the variation of phase in discrete inertia model. The propagation characteristics of disturbance signals with different frequencies are analyzed and the transition frequency of disturbance propagation is proposed. The quantitative relationship between frequency dispersion phenomenon and local oscillation phenomenon and turning frequency is revealed. Finally, the theoretical foundation of disturbance identification based on WAMS is established. A disturbance on-line location method based on WAMS data is proposed. The short-period fluctuation characteristics of steady state frequency and the single disturbance after arrival are revealed. Adjust up and down characteristics. Based on the sliding data window, the time of arrival (DOA) of electromechanical wave is determined and the Floyd algorithm is used to construct the reference time matrix which is composed of the disturbance propagation time of different fault points. An ordered minimum distance classifier is proposed to identify the disturbance location using the time-series feature of disturbance arrival. The search space is greatly reduced by this algorithm. It can meet the requirements of online applications. A disturbance time of arrival prediction algorithm is proposed. This paper provides important decision information for active security control of power network based on disturbance propagation theory. The undirected weighted graph corresponding to frame structure model and the adjacent matrix with the weight of electromechanical wave propagation time in each transmission line are constructed. The Dijkstra algorithm based on the disturbance arrival time and the fastest path search algorithm is proposed. At the same time. Furthermore, the influence mechanism of positive and negative reflection on the arrival time of electromechanical wave is analyzed, and the method of selecting the threshold of disturbance arrival is put forward.
【学位授予单位】:华北电力大学(北京)
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM712

【相似文献】

相关期刊论文 前10条

1 秦晓辉;毕天姝;杨奇逊;;基于广域同步量测的电力系统扰动识别与定位方法[J];电网技术;2009年12期

2 王晓茹;阮铮;刘克天;;电力系统扰动后稳态频率预测直接法改进[J];电力系统及其自动化学报;2010年04期

3 阮谢永;干扰环境下的控制系统扰动建模与仿真[J];机电工程技术;2004年12期

4 张卓;陈志刚;李宏伟;;交直流混合系统扰动识别研究[J];中国市场;2010年Z1期

5 刘克天;王晓茹;薄其滨;;基于广域量测的电力系统扰动后最低频率预测[J];中国电机工程学报;2014年13期

6 付忠广;闫凯;;电力系统扰动对机组轴系扭振影响的探讨[J];电力设备;2007年10期

7 伍双喜;张伯明;吴文传;孙宏斌;;基于实测系统扰动的同步发电机参数辨识与验证[J];电网技术;2012年11期

8 邵雅宁;焦银凯;高光;李健;王亚俊;王乙斐;马志昊;;面向电力系统扰动过程的动态特征研究[J];陕西电力;2013年02期

9 黄群古;基于自调节小波变换的电力系统扰动信号检测[J];继电器;2005年20期

10 贾清泉;于连富;王宁;崔明勇;张巍;;原子稀疏分解算法在电力系统扰动信号分析中的应用[J];电力系统保护与控制;2010年19期

相关会议论文 前1条

1 杨联联;;系统扰动对发电机组的影响及应对措施[A];全国火电600MWe级机组能效对标及竞赛第十四届年会论文集[C];2010年

相关博士学位论文 前1条

1 燕跃豪;基于WAMS的电力系统扰动传播机理研究[D];华北电力大学(北京);2014年

相关硕士学位论文 前1条

1 刘新宇;电力系统扰动检测及信息建模[D];西南交通大学;2015年



本文编号:1490055

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1490055.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a8e3c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com