大规模分布式风电电源接入对配电网调度的影响分析及对策
发布时间:2018-02-12 16:20
本文关键词: 分布式发电 动态最优潮流 混合蛙跳算法 无功补偿 出处:《山东大学》2015年硕士论文 论文类型:学位论文
【摘要】:随着分布式发电在现代电力系统中的渗透率水平越来越高,近年来带来的最大挑战就是如何对电网进行优化控制,如包含分布式电源的最优潮流计算。在本文中,主要探讨了分布式发电给配电网带来的影响,着力于研究风力发电并网带来的影响。文中讨论了定速风机和变速风机的基本模型,潮流计算中采用了风机的的有功输出期望模型。当考虑到传统发电机的阀点效应,含有风力发电并网系统的动态潮流计算是一个具有多约束、非凸性、非线性的计算问题。另外,考虑到定速风机的无功补偿设备的离散性时,潮流计算是混合整数优化问题。为了对该问题进行求解,本文提出了混合蛙跳算法应用于动态潮流的求解,以全部单元最小费用为目标函数,通过对IEEE 30节点进行仿真算例分析,得到了其最优解。通过与粒子群优化算法的比较,证明了该算法的有效性,具有一定的实用性。
[Abstract]:With the increasing permeability of distributed generation in modern power system, the biggest challenge in recent years is how to optimize the control of power network, such as the optimal power flow calculation including distributed generation. In this paper, In this paper, the influence of distributed generation on distribution network is discussed, and the influence of wind power generation connected to grid is studied. The basic models of fixed speed fan and variable speed fan are discussed in this paper. The active power output expectation model of the fan is used in the power flow calculation. Considering the valve point effect of the traditional generator, the dynamic power flow calculation with the wind power grid connection system is a multi-constrained, non-convexity. In addition, considering the discreteness of reactive power compensation equipment of a constant speed fan, the power flow calculation is a mixed integer optimization problem. In this paper, a hybrid leapfrog algorithm is proposed to solve the dynamic power flow. With the minimum cost of all units as the objective function, the optimal solution is obtained by analyzing the simulation examples of IEEE 30 nodes, and comparing with the particle swarm optimization algorithm. It is proved that the algorithm is effective and practical.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM73;TM614
【参考文献】
相关期刊论文 前3条
1 张超;计建仁;夏翔;甘德强;;分布式发电对配电网继电保护及自动化的影响[J];华东电力;2006年09期
2 刘磊;江辉;彭建春;;分布式发电对配电网网损和电压分布的影响[J];计算机仿真;2010年04期
3 崔文华;刘晓冰;王伟;王介生;;混合蛙跳算法研究综述[J];控制与决策;2012年04期
,本文编号:1506047
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1506047.html