当前位置:主页 > 科技论文 > 电力论文 >

银纳米颗粒对有机太阳能电池性能的影响

发布时间:2018-02-25 21:02

  本文关键词: 有机太阳能电池 银纳米颗粒 二氧化硅包覆 隔离层 能量转化效率 出处:《太原理工大学》2014年硕士论文 论文类型:学位论文


【摘要】:化石能源日益消耗,迫切需要发展新能源,太阳能以其资源丰富、无需运输、对环境无污染等优点,受到各国的追捧。其中,太阳能电池是太阳能利用的一个重要方面。与无机太阳能电池相比,有机太能电池具有质轻、工艺简单、材料来源广泛且可塑性强、可加工在柔性衬底上等一系列优点,在工业化生产上具有更大的应用潜力。目前,制约有机太阳能电池发展的主要瓶颈是能量转化效率低,达不到产业化的要求,因此,提高有机太阳能电池的能量转化效率成为各国科学家的研究热点。利用金属纳米颗粒的表面等离子体共振效应提高太阳能电池的光吸收,已经成为提高太阳能电池能量转化效率的一种有效技术。本论文针对裸的金属颗粒会导致激子淬灭、载流子复合的问题,提出将包覆型银纳米颗粒掺杂在有机太阳能电池中或插入隔离层将金属颗粒与光敏层隔开,以更有效地提高太阳能电池的能量转化效率。 本文首先合成并表征了银纳米颗粒(AgNPs)及二氧化硅包覆的银纳米颗粒(Ag@SiO2),然后在对标准的P3HT:PCBM体系太阳能电池优化的基础上,将AgNPs或Ag@SiO2引入到器件中,研究了AgNPs的局域表面等离子体共振效应以及包覆层、隔离层对有机太阳能电池能量转化效率的影响,具体工作如下: 1、利用液相还原法制备形貌、大小可控的AgNPs,并利用TEOS水解对平均粒径为30nm的AgNPs进行二氧化硅包覆,通过调节酸碱度和TEOS的添加浓度,制备了包覆厚度为6~8nm左右的核壳银纳米颗粒Ag@SiO2。 2、通过调整P3HT:PCBM溶液的比例、浓度,薄膜的厚度以及热退火工艺,优化P3HT:PCBM体系有机太阳能电池的性能。结果表明:P3HT:PCBM薄膜厚度为220nm,退火温度为120℃,退火时间为10min时器件的能量转换效率最高,达到2.6%。 3、为了比较研究,本文首先将AgNPs引入到上述优化的标准电池的缓冲层中,研究了不同粒径、不同浓度AgNPs对有机太阳能电池性能的影响。结果表明:添加30nm AgNPs的器件性能优于添加70nm AgNPs的器件,且添加浓度为3mg/ml、粒径为30nm的AgNPs的器件能量转化效率最高,为3.08%,相比于标准器件提高了18.5%。 4、在上述研究的基础上,在掺杂缓冲层PEDOT:PSS+AgNPs和光敏层P3HT:PCBM之间引入纯PEDOT:PSS作为隔离层,研究了隔离层的厚度对有机太阳能电池性能的影响。结果表明:当隔离层厚度为10nm时器件的能量转化效率最大,达到3.15%,相比于标准器件提高21.2%,与无隔离层的AgNPs掺杂器件相比能量转化效率进一步提高。 5、最后将Ag@SiO2分别掺杂到缓冲层和光敏层中,研究了不同颗粒浓度对有机太阳能电池性能的影响。结果表明:Ag@SiO2可以更有效地提高器件性能。掺杂到缓冲层时,当添加浓度为3ng/ml,器件效率最高可达3.23%,相比于标准器件增加了24.2%;掺杂到光敏层时,添加浓度为1mg/ml,器件效率最高可达3.22%,相比于标准器件增加了23.8%。
[Abstract]:With the increasing consumption of fossil energy, there is an urgent need to develop new sources of energy. Solar energy, with its rich resources, no need to transport and no pollution to the environment, has been sought after by all countries. Compared with inorganic solar cells, organic solar cells have a series of advantages, such as light weight, simple process, wide source of materials and strong plasticity, and can be processed on flexible substrates. At present, the main bottleneck restricting the development of organic solar cells is the low efficiency of energy conversion, which can not meet the requirements of industrialization. Improving the energy conversion efficiency of organic solar cells has become a research hotspot of scientists all over the world. The surface plasmon resonance (SPR) effect of metal nanoparticles is used to improve the light absorption of solar cells. It has become an effective technology to improve the energy conversion efficiency of solar cells. In this paper, we aim at the problem that bare metal particles can lead to exciton quenching and carrier recombination. In order to improve the energy conversion efficiency of solar cells, it is proposed that the coated silver nanoparticles are doped in organic solar cells or inserted into the isolation layer to separate metal particles from Guang Min layer in order to improve the energy conversion efficiency of solar cells more effectively. In this paper, silver nanoparticles (AgNPs) and silica coated silver nanoparticles (AgNPs) and silica coated silver nanoparticles (AgNPs) were synthesized and characterized. Then AgNPs or Ag@SiO2 were introduced into the devices based on the optimization of standard P3HT: PCBM solar cells. The local surface plasmon resonance (SPR) effect of AgNPs and the influence of the coating layer and isolation layer on the energy conversion efficiency of organic solar cells are studied. 1. AgNPs with controlled size and morphology were prepared by liquid phase reduction method. AgNPs with average diameter of 30 nm was coated with silica by TEOS hydrolysis. The pH and the concentration of TEOS were adjusted. The core-shell silver nanoparticles (AgSiO2) with a thickness of about 6 ~ 8 nm were prepared. 2. The performance of organic solar cells in P3HT: PCBM system was optimized by adjusting the ratio, concentration, thickness and thermal annealing process of P3HT: PCBM solution. The results showed that the thickness of P3HT: PCBM was 220 nm and the annealing temperature was 120 鈩,

本文编号:1535129

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1535129.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e437a***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com