阀控铅酸蓄电池监测修复系统的研究与设计
发布时间:2018-02-26 18:33
本文关键词: 阀控铅酸蓄电池 监测除硫修复 锁相交流阻抗法 复合脉冲振荡法 出处:《北京交通大学》2014年硕士论文 论文类型:学位论文
【摘要】:阀控铅酸蓄电池(VRLA Battery, Valve Regulated Lead Acid Battery)系统在工作时由于使用不当,经常会出现内部劣化的情况。随着蓄电池在电力系统中的重要性不断提高,如何监测蓄电池的劣化程度、如何有效对轻度劣化的蓄电池进行修复,成为了工作人员研究的热门问题。设计蓄电池监测与修复系统,不仅降低了蓄电池的损坏风险,还在一定程度上延长了蓄电池的寿命。另外,本系统也在节约成本和环境保护方面有着重要的意义。 蓄电池监测与修复技术的主要研究可分为两部分: 1.以深度放电法、电压巡检法、卡尔曼滤波法和内阻测量法等方法为代表的蓄电池劣化监测技术。 2.以水疗法、大电流充电法和脉冲除硫法等方法为代表的蓄电池修复技术。 经过理论研究和仿真分析,深度放电法、电压巡检法与卡尔曼滤波法等技术由于损害电池、监测精度低和成本高等各种原因,不适合VRLA的劣化程度估计因此本文改进了内阻测量法,并将其作为蓄电池劣化监测的核心技术。除此之外,还对水疗法、大电流充电法和脉冲除硫法等方法进行了比较,最终本文采用了不损害VRLA极板的改进型脉冲除硫法作为蓄电池除硫修复的核心技术。 蓄电池的内阻极小,在测量时难度很高。传统的内阻监测方法测量误差几乎都在10%以上,大大影响了VRLA劣化程度的估计。本文针对这一问题,设计了基于锁相放大器AD630的交流阻抗测量电路,在进行计算和仿真后,将测量误差控制在5%以内,提高了劣化程度监测的准确性。本文在最后通过现场数据测量验证了系统的可靠性。 国内外研究人员一直在除硫修复脉冲的频率、波形以及幅值大小等问题上存在分歧。本文针对这些问题,通过查阅大量文献,选择了一种频率为8KHz、幅值为4.5V的波形作为修复脉冲。在仿真完成后,本文将除硫修复电路用于现场数据测量,测量结果验证了该除硫修复脉冲的可行性。 在进行硬件设计后,本文完成了能够使各模块协调工作的控制系统。系统中包含了监测模块、修复模块、电源模块和上位机通信模块。系统的完成使得监测与修复模块可以通过上位机直接控制。不仅如此,本文还使用了C++语言设计了上位机界面,方便了上位机对系统进行操作。
[Abstract]:The internal deterioration of Valve Regulated Lead Acid Batterysystem often occurs due to improper use. With the increasing importance of battery in power system, how to monitor the deterioration degree of battery, How to effectively repair the slightly degraded battery has become a hot issue for researchers. The design of battery monitoring and repair system not only reduces the risk of battery damage, It also prolongs the battery life to a certain extent. In addition, this system also has the important significance in the aspect of saving the cost and protecting the environment. The main research of battery monitoring and repairing technology can be divided into two parts:. 1. The methods of battery deterioration monitoring, such as depth discharge method, voltage inspection method, Kalman filter method and internal resistance measurement method. 2. Battery repair technology represented by hydrotherapy, high current charging and pulse desulphurization. Through theoretical research and simulation analysis, depth discharge method, voltage inspection method and Kalman filter method, etc., due to battery damage, low monitoring accuracy and high cost, etc. Therefore, this paper improves the internal resistance measurement method and regards it as the core technology of battery deterioration monitoring. In addition, the methods of hydrotherapy, high current charging and pulse desulphurization are compared. In the end, the improved pulse desulfurization method, which does not damage the VRLA plate, is adopted as the core technology of the battery desulfurization repair. The internal resistance of battery is very small, so it is very difficult to measure. The measurement error of traditional internal resistance monitoring method is almost above 10%, which greatly affects the estimation of VRLA deterioration degree. An AC impedance measurement circuit based on phase-locked amplifier (AD630) is designed. After calculation and simulation, the measurement error is controlled within 5%. The accuracy of deterioration degree monitoring is improved. Finally, the reliability of the system is verified by field data measurement. Researchers at home and abroad have been divided on the frequency, waveform and amplitude of sulfur removal and repair pulse. A waveform with a frequency of 8 KHz and a amplitude of 4.5 V is selected as the repair pulse. After the simulation is completed, the desulfurization repair circuit is used in the field data measurement, and the measurement results verify the feasibility of the desulfurization repair pulse. After the hardware design, this paper completes the control system which can make all the modules work harmoniously. The system includes monitoring module, repairing module, The completion of the system enables the monitoring and repair module to be directly controlled by the upper computer. Not only that, this paper also uses C language to design the upper computer interface, which makes it convenient for the upper computer to operate the system.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM912
【参考文献】
相关期刊论文 前10条
1 朱松然;阀控密封式铅蓄电池负极的失效[J];蓄电池;1999年01期
2 王艳萍;;通信用阀控蓄电池的维护及常见问题解决[J];当代通信;2006年03期
3 王慧;胡恒生;张明莲;胡恩勇;;铅酸蓄电池硫化的原因及对策[J];电源技术应用;2009年11期
4 严加朋;王大志;金有超;;基于DS2438的大功率蓄电池状态检测[J];单片机与嵌入式系统应用;2011年03期
5 宗殿瑞;尹清珍;;计算机控制系统抑制干扰的软件技术[J];电气自动化;2001年02期
6 李璇华;唐晓泉;黄益庄;;单片机控制系统和微机系统之间通信的几个技术问题[J];电气自动化;2001年06期
7 毛贤仙,朱品才,朱瑶玲,胡信国;深循环用阀控铅酸蓄电池的失效机理[J];电源技术;2002年02期
8 江莉;李永富;;精确测量蓄电池内阻方法的研究[J];电源世界;2006年06期
9 夏勇;锁相放大技术在蓄电池内阻检测中的应用[J];电子技术应用;2004年03期
10 陈启宏;舒芝锋;全书海;;燃料电池内阻在线测试系统研究[J];华中师范大学学报(自然科学版);2007年03期
,本文编号:1539181
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1539181.html