当前位置:主页 > 科技论文 > 电力论文 >

风电功率预测方法研究及其应用

发布时间:2018-03-01 18:25

  本文关键词: 风电功率预测 经验模式分解 相空间重构 支持向量机 元学习组合预测 出处:《湖南大学》2014年硕士论文 论文类型:学位论文


【摘要】:随着大规模风电接入电网,风电功率的波动性和间歇性给电力系统安全稳定运行带来了严峻的挑战。风电功率预测是解决大规模风电接入电网的关键技术之一,能够为电力系统调度控制提供技术支持。目前国内针对风电功率预测方法的研究取得了一定的成果但不够深入,预测系统的开发刚刚起步,缺乏规范和实践经验。因此,对风电功率预测方法研究具有重要的意义。 本文以某风电场为研究对象,对风电场风速分布风电功率时间特征展开了系统的研究,以探求更高精度的风电功率预测方法。同时,,根据需求分析研发了风电功率预测系统。主要内容如下: 首先,以某风电场为对象,对风速功率特性进行了系统的研究。结果表明:风速的概率分布呈现威布尔分布特征;风电功率具有随机性波动性和混沌性,随着时间尺度的降低风电功率的波动性减弱。 然后,提出了一种以经验模式分解(Empirical Mode Decomposition,EMD)和相空间重构为核心的风电功率预测方法,将分解后的本征模函数(IntrinsicModel Function, IMF)分量和剩余分量进行相空间重构,将重构序列输入支持向量机(Support Vector Machine,SVM)模型预测风电功率。结果表明,经过EMD分解降低了建模复杂程度,相空间重构能够降低偏差较大分量对预测结果的影响,提高了预测的精确度。 其次,提出了基于元学习的风电功率非线性组合预测模型。以灰色模型时间序列模型线性回归模型和神经网络模型预测结果和预测序列的特征属性作为元预测器的输入,从而发现并纠正基预测器的系统偏差。在元预测器中,采用门控网络函数确定各基预测器权重,保证了权重的时变性和非负性。将该算法应用于风电功率预测,预测结果表明:该算法预测精度高于单一预测算法和常用的组合预测算法。 最后,根据需求分析开发了一套风电功率预测系统,实现了对风电功率的短期预测。通过某风电场实测数据测试表明,系统安全可靠,可操作性强,能够很好地实现风电功率预测。
[Abstract]:With the large-scale wind power, wind power fluctuation and intermittence has brought severe challenges to the safe and stable operation of power system. Wind power prediction is one of the key technologies to solve large scale wind power integration, can provide technical support for the dispatch of power systems. The wind power prediction method research some achievements but not deep enough, the prediction system has just started, the lack of standardized and practical experience. It has important significance for wind power prediction method research.
In this paper, a wind farm is taken as the research object, and the wind speed distribution and wind power time characteristics of wind farms are systematically studied, in order to explore a more accurate prediction method of wind power. Meanwhile, a wind power prediction system is developed based on demand analysis.
First of all, with a wind farm as the object, the wind speed? Power characteristics were studied. The results show that the wind speed probability distribution of Weibull distribution characteristics; wind power randomness? Volatility and chaos, with time scale to reduce the volatility of wind power weakened.
Then, put forward a kind of empirical mode decomposition to (Empirical Mode Decomposition, EMD) wind power forecasting methods and phase space reconstruction is the core of the decomposed intrinsic mode functions (IntrinsicModel, Function, IMF) phase space reconstruction and residual components, the reconstructed sequence input support vector machine (Support Vector Machine SVM), the model of wind power forecasting. The results showed that after EMD decomposition reduces the modeling complexity, phase space reconstruction can reduce the influence of large deviation component on the prediction results, improve the prediction accuracy.
Secondly, based on meta learning wind power nonlinear combination forecasting model. The grey model? Time series model? Linear regression model and neural network model to predict the characteristics of results and the prediction of the sequence as the input element predictor, to discover and correct deviation system based pre sensor. In the predictor, determine the the base predictor weighted by the gating network function, ensure the time-varying and non negative weights. This algorithm is applied to predict wind power. The prediction results show that the algorithm prediction accuracy is higher than the combination of single prediction algorithm and the commonly used prediction algorithm.
Finally, according to the demand analysis, a wind power prediction system is developed, and the short-term prediction of wind power is realized. The test data of a wind farm show that the system is safe, reliable and operable, and it can achieve the prediction of wind power very well.

【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM614

【参考文献】

相关期刊论文 前10条

1 王金山;杨国超;;一种基于时序可变加权系数的组合预测模型[J];重庆理工大学学报(自然科学);2012年02期

2 冬雷;王丽婕;高爽;廖晓钟;;基于混沌时间序列的大型风电场发电功率预测建模与研究[J];电工技术学报;2008年12期

3 张国强;张伯明;;基于组合预测的风电场风速及风电机功率预测[J];电力系统自动化;2009年18期

4 张宜阳;卢继平;孟洋洋;严欢;李辉;;基于经验模式分解和混沌相空间重构的风电功率短期预测[J];电力系统自动化;2012年05期

5 谷兴凯;范高锋;王晓蓉;赵海翔;戴慧珠;;风电功率预测技术综述[J];电网技术;2007年S2期

6 潘迪夫;刘辉;李燕飞;;基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J];电网技术;2008年07期

7 崔杨;穆钢;刘玉;严干贵;;风电功率波动的时空分布特性[J];电网技术;2011年02期

8 杨茂;贾云彭;钱为;陈琳;;基于动态权重的风电功率组合预测方法研究[J];东北电力大学学报;2013年Z1期

9 华琦;王雷;陆金桂;杜杰;;基于混沌理论与神经网络的短期风速滚动预测[J];电测与仪表;2013年07期

10 植雅芳;;基于SSH框架的在线考试系统的设计与实现[J];福建电脑;2013年11期

相关博士学位论文 前3条

1 杨志凌;风电场功率短期预测方法优化的研究[D];华北电力大学(北京);2011年

2 仝纪龙;河西地区风速变化特征及风能预测方法研究[D];兰州大学;2012年

3 靳双龙;中尺度WRF模式在风电功率预测中的应用研究[D];兰州大学;2013年



本文编号:1553053

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1553053.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e256f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com