当前位置:主页 > 科技论文 > 电力论文 >

变电站二次设备全寿命周期管理及故障检测

发布时间:2018-03-03 12:01

  本文选题:二次设备 切入点:全寿命周期管理 出处:《华北电力大学》2014年硕士论文 论文类型:学位论文


【摘要】:变电站二次设备是电力系统稳定运行的重要组成部分,根据具体职能的分类,它们担负着对一次设备监察、测量、控制、保护以及调节的重要任务,因此二次设备的正常运行关乎整个电力系统的稳定运行。近年来,越来越多的专家学者将注意力集中到了二次设备全寿命周期管理及故障预测这一重要且富有发展前景的科学领域。越来越多的二次设备全寿命周期管理及监测方法被学者提出,其中有相当一部分已经被开发为成熟的产品,进入市场。而部分非接触监测法由于其独特的优越性而广受厂家与学者的欢迎。 本文通过变电站二次系统LCC分析,从系统最优的角度考虑问题,在设备寿命的各个阶段坚定地树立寿命周期成本这个全面综合的成本观念,以达到以尽可能少的成本确保国家电力供应的总目标。同时通过由概率论发展而来的贝叶斯网络法,并将其利用到故障预测中,通过其对系统的建模,故障预测得以更加直观、形象化的实现。本文首先查阅文献资料以及产品说明,介绍了目前二次设备的主要类型,以及各类二次设备所具有的自检功能,整理了相应的自检信息;介绍了贝叶斯网络故障预测法的基本原理,针对运行的低压减载装置,利用贝叶斯网络法设计了一种应用方案:将该装置的每个模块分别建模,监视其各元件的运行状况,得出其故障概率,根据网络拓扑结构计算出最终的子节点,也就是该模块所能实现的功能的故障概率,对此设计出检修方案,实现故障预测。
[Abstract]:Substation secondary equipment is an important part of the stable operation of power system. According to the classification of specific functions, they undertake the important tasks of monitoring, measuring, controlling, protecting and regulating primary equipment. Therefore, the normal operation of the secondary equipment is related to the stable operation of the whole power system. More and more experts and scholars have focused their attention on the important and promising scientific field of life-cycle management and fault prediction of secondary equipment. More and more methods of life-cycle management and monitoring of secondary equipment have been proposed by scholars. Some of them have been developed as mature products and entered the market, while some non-contact monitoring methods have been widely welcomed by manufacturers and scholars because of their unique advantages. Based on the LCC analysis of substation secondary system, this paper considers the problem from the point of view of system optimization, and firmly sets up the comprehensive cost concept of life cycle cost in every stage of equipment life. At the same time, the Bayesian network developed from probability theory is applied to the fault prediction, and through the modeling of the system, the fault prediction is more intuitionistic. The realization of visualization. Firstly, this paper reviews the literature and product description, introduces the main types of secondary equipment and the self-checking function of all kinds of secondary equipment, and arranges the corresponding self-examination information. This paper introduces the basic principle of Bayesian network fault prediction method, and designs an application scheme by using Bayesian network method for the low voltage load reduction device. Each module of the device is modeled separately to monitor the running status of each component. The fault probability is obtained and the final sub-nodes are calculated according to the network topology, which is the failure probability of the function that the module can realize, and the overhaul scheme is designed to realize the fault prediction.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM63

【参考文献】

相关期刊论文 前10条

1 郭玉鹏;时和平;巢蕾;;通信装备故障诊断贝叶斯网络[J];兵工自动化;2011年07期

2 马世英;易俊;孙华东;赵理;马超;;电力系统低压减载配置原则及方案[J];电力系统自动化;2009年05期

3 吴欣,郭创新;基于贝叶斯网络的电力系统故障诊断方法[J];电力系统及其自动化学报;2005年04期

4 王楠,陈志业,律方成;电容型设备绝缘在线监测与诊断技术综述[J];电网技术;2003年08期

5 钱颖雪;徐良芝;;浅述新兴的电子系统故障预测与健康管理[J];电脑与电信;2010年07期

6 陆宁云;何克磊;姜斌;吕建华;;一种基于贝叶斯网络的故障预测方法[J];东南大学学报(自然科学版);2012年S1期

7 许丽佳;王厚军;龙兵;;基于贝叶斯网络的复杂系统故障预测[J];系统工程与电子技术;2008年04期

8 汤磊,孙宏斌,张伯明,高峰;基于信息理论的电力系统在线故障诊断[J];中国电机工程学报;2003年07期

9 冯辅周;司爱威;邢伟;江鹏程;;故障预测与健康管理技术的应用与发展[J];装甲兵工程学院学报;2009年06期

10 琚军;姜文尉;熊茂斌;何建明;;红外诊断技术在二次设备状态检修中的应用[J];浙江电力;2009年01期



本文编号:1560946

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1560946.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6b973***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com