当前位置:主页 > 科技论文 > 电力论文 >

基于改进雷击跳闸率计算法的输电线路雷击风险评估方法研究

发布时间:2018-03-06 18:44

  本文选题:雷电流幅值概率分布 切入点:地闪密度分布 出处:《重庆大学》2014年硕士论文 论文类型:学位论文


【摘要】:随着高压输电技术的迅猛发展,线路走廊宽度、杆塔高度等随着输电线路电压等级的提高而增加,线路遭受雷击的可能越来越大,雷电灾害造成的经济损失和人员伤亡更加普和严重。因此,研究区域雷电活动规律,准确评估输电线路耐雷性能,提出合理的防雷措施,减小雷击事故造成的损失和输电线路防雷成本是当前亟待解决的问题。 本文对雷电活动规律以及输电线路防雷性能进行了深入研究,提出了输电线路雷击风险评估模型和评估参数体系,综合考虑各种风险指标,建立了输电线路雷击风险评估模型,实现线路的差异化雷击风险评估。主要工作如下: ①本文提出了从杆塔到杆塔区段再到输电线路的层级式评估结构,建立了由雷击跳闸率、雷击跳闸风险、雷击故障风险、输电线路风险四个部分构成的风险评估参数体系。 ②从实际雷电活动情况出发,筛选给定区域内雷电定位系统监测的数据,用数据分析软件拟合该区域的雷电流幅值概率分布函数,地闪密度GPD模型;通过分析影响杆塔耐雷水平的因素,得到杆塔的绕击耐雷水平和反击耐雷水平与杆塔耐雷水平之间的物理联系及函数关系;在分析雷电参数分布规律和杆塔耐雷水平的基础上,提出了改进雷击跳闸率计算方法,,雷击跳闸率计算结果更接近实际统计值。 ③以杆塔作为输电线路雷击风险评估的基本单元,综合考虑输电线路所在区域的地形地貌及气候条件,评估每一基杆塔的雷击跳闸风险;应用改进层次分析法确定杆塔区段的雷击跳闸风险权重,建立了输电线路风险评估模型,实现了杆塔区段雷击跳闸风险的排序,可用于确定输电线路的薄弱区段。 ④三条110kV、220kV、500kV输电线路雷电风险评估结果表明,该方法比仅用雷击跳闸率作为输电线路评估指标的风险评估法更准确,能实现从杆塔、杆塔区段到全线的风险评估,适用性更强。
[Abstract]:With the rapid development of HV transmission technology, the width of the corridor and the height of the tower increase with the increase of the voltage level of the transmission line, and the lightning strike of the transmission line is more and more likely. The economic losses and casualties caused by lightning disasters are more common and serious. Therefore, the study of regional lightning activity rules, the accurate evaluation of lightning resistance performance of transmission lines, the proposed reasonable lightning protection measures, It is an urgent problem to reduce the loss caused by lightning strike and the lightning protection cost of transmission line. In this paper, the lightning activity law and lightning protection performance of transmission line are studied deeply, and the risk assessment model and parameter system of transmission line lightning strike are put forward, and all kinds of risk indexes are considered synthetically. The lightning stroke risk assessment model of transmission line is established to realize the differentiated lightning stroke risk assessment of transmission lines. The main work is as follows:. In this paper, a hierarchical evaluation structure from tower to tower to transmission line is proposed, and a risk evaluation parameter system is established, which consists of four parts: lightning tripping rate, lightning tripping risk, lightning tripping risk and transmission line risk. (2) based on the actual lightning activity, the monitoring data of lightning location system in a given area are screened, and the probability distribution function of lightning current amplitude is fitted by data analysis software, and the GPD model of ground flicker density is obtained. Based on the analysis of the factors affecting the lightning resistance of the tower, the physical relation and the functional relationship between the lightning resistance level of the tower and the lightning resistance level of the tower are obtained, and the distribution law of lightning parameters and the lightning resistance level of the tower are analyzed based on the analysis of the lightning resistance level of the tower, and the relationship between the lightning resistance level of the tower and the lightning resistance level of the tower is obtained. An improved method for calculating the lightning tripping rate is presented. The calculated result of the lightning tripping rate is closer to the actual statistical value. (3) taking the pole tower as the basic unit of lightning stroke risk assessment of transmission lines, considering the terrain, geomorphology and climate conditions of the transmission line area, the lightning tripping risk of each base tower is evaluated. Based on the improved Analytic hierarchy process (AHP), the lightning tripping risk weight of the tower section is determined, and the transmission line risk assessment model is established, which can be used to determine the weak section of the transmission line. 4 the results of lightning risk assessment for three 110kV / 220kV / 500kV transmission lines show that this method is more accurate than the risk assessment method using only lightning tripping rate as the evaluation index of transmission lines, and it can realize the risk assessment from pole tower, pole tower section to the whole line, and is more applicable.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM863

【参考文献】

中国期刊全文数据库 前10条

1 李瑞芳;吴广宁;曹晓斌;马御棠;刘平;苏杰;;雷电流幅值概率计算公式[J];电工技术学报;2011年04期

2 别朝红,王锡凡;复杂电力系统一类连锁反应事故可靠性评估模型和算法[J];电力系统自动化;2001年20期

3 孙可,韩祯祥,曹一家;复杂电网连锁故障模型评述[J];电网技术;2005年13期

4 严春银;胡久涛;;电网雷击风险评估及其法律制度研究[J];电网技术;2006年S1期

5 石立宝;史中英;姚良忠;倪以信;Masoud Bazargan;;现代电力系统连锁性大停电事故机理研究综述[J];电网技术;2010年03期

6 陈及时;山区送电线路实际雷击跳闸率的分析[J];高电压技术;1995年01期

7 许高峰,司马文霞,顾乐观;输电线路雷电屏蔽问题研究的现状和发展[J];高电压技术;1999年04期

8 易辉,崔江流;我国输电线路运行现状及防雷保护[J];高电压技术;2001年06期

9 周远翔;鲁斌;李震宇;徐旭;胡航海;王宁华;梁曦东;关志成;;蒙特卡罗法计算线路雷击跳闸率随机过程研究[J];高电压技术;2007年05期

10 周远翔;鲁斌;尹庆福;崔吉峰;李震宇;刘亚新;梁曦东;关志成;;工频电压对输电线路雷击跳闸率的影响[J];高电压技术;2007年09期

中国博士学位论文全文数据库 前1条

1 李家启;基于LLS的重庆地区雷电活动规律及其风险评估研究[D];南京信息工程大学;2012年



本文编号:1576033

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1576033.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5eed0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com