基于行为的电动汽车充换电需求与服务容量研究
发布时间:2018-03-13 15:33
本文选题:电动汽车 切入点:需求规律 出处:《山东大学》2014年博士论文 论文类型:学位论文
【摘要】:随着经济发展和人们生活水平的不断提高,我国的汽车量正在迅猛增长,对生态环境构成严重威胁。在节能减排政策驱使下,可再生能源发电将得到快速发展。电动汽车是可再生能源的最好互补,发展电动汽车不仅可以满足人们出行的需要,而且可促进节能减排,是我国汽车产业发展的战略方向。 电动汽车大规模接入对电力系统运行既有正面的影响,也有负面的影响。电动汽车负荷规律的不确定性对电力系统的安全与可靠运行带来挑战,大量的电动汽车接入可能会造成某些时段的负荷明显上升,若车辆充电时段集中于负荷晚高峰时段,则对电网的安全可靠运行更加不利,电动汽车无序充电也可能对电力系统造成网损增加、电能质量下降、负荷峰谷差率增大等不利影响;同时,电动汽车特有的主动行为与储能特性为电力系统实现可再生能源消纳、负荷削峰填谷等提供了有利条件。但是,作为研究电动汽车大规模接入对电力系统影响的基础,对电动汽车的电池需求规律、充电负荷规律、主动空间等问题的相关研究依然薄弱;另一方面,电动汽车的大规模普及依赖于完善的服务网络,但目前对集中式服务设施的定址定容方案的服务容量和盈利能力问题的研究较少,造成集中式服务设施布点方案和设备定容配置方案所产生的服务容量不确定,以及收益能力不确定的问题,这类问题又影响着对电动汽车服务设施投资的积极性,可能会延缓服务网络建设,对电动汽车产业的发展造成不利影响。 因此,为解决上述问题,有必要对电动汽车的电池需求规律、充电负荷规律、主动空间等进行研究,为进一步研究大规模电动汽车接入对电力系统的影响问题打下基础;同时也有必要对电动汽车充换电站布点以及集中式服务站建设中的服务容量、盈利能力问题进行研究,以实现在实际投资建设前对于布点方案、站内定容配置方案的服务容量预估、收益能力预估,为布点方案优化、站内资源配置优化等问题的研究打下基础。 本文的主要工作和创新成果如下: (1)在计及车辆的行驶规律的前提下,结合电动汽车充电模式、换电模式这两种电能补充方式的特点,采用蒙特卡洛方法实现了对车辆行驶、电池电量变化、需求产生、电能补充等行为的时序模拟,在多情景集下对一定规模电动汽车在换电模式下的电池需求规律和最小储备电池数量,在充电模式下的电量需求规律和即插即充的充电负荷规律,以及充电、换电两种模式下的主动空间进行研究。在每次模拟中对车辆一日中的出行时刻、出行距离、各时段的行驶速度等随机变量进行抽取,可明确电动汽车一日中具体的行驶、静止时段,从而对电动汽车的电量消耗过程进行描述,依据电动汽车换电模式、充电模式的不同特点,结合车辆的剩余电量、停放时段等因素,分析车辆产生用电需求的具体时刻。在模拟中结合电动汽车用电需求规律,并考虑了换电模式下的储备电池循环、最小电池储备需求,以及充电模式下的电动汽车可入网时段,对电动汽车的两种电能补充方式分别研究。该研究是进行电动汽车有序充电控制、电动汽车充电设施定容规划、电动汽车与电网互动技术(V2G)、可再生能源消纳、电动汽车负荷对电网负荷、电能质量、电网经济运行影响等研究的基础。 (2)提出了一种城市区域内换电站布点方案的路上成本计算方法。在考虑区域内车辆密度差异及路网建设差异的前提下,建立了将有向图转换为带权二又树进行遍历,以确定最优路径和最优选站的电动汽车行为模型,通过对车辆行为的时序模拟实现了换电站布点方案的换电路上成本计算,并研究了换电路上成本对换电站布点方案的服务容量以及各换电站平均负荷的影响。通过对待分析区域进行划分,将路网信息简化为网格信息,对区域内的车辆位置、目的地位置、换电站位置三者的空间关系进行描述,实现了区域内的换电站布点方案路上成本计算,并以此为基础对城市区域内某布点方案的服务容量进行研究。该研究是优化换电站布点、换电站定容、换电站布点方案收益预估等研究的基础,同时,本方法也可为集中式充电站的相关研究提供有益的参考。 (3)建立了换电站运营模型。建立了以最大化服务容量为目标,通过计及行驶规律的车辆行为时序模拟产生的换电需求作为排队的输入来源,多类设备形成服务机构的排队系统,并在模型中考虑了车辆等待超时退出、设备分类与服务时间、分时电价下的计划充电、电池循环、最小设备投入的换电站运营模型,研究了不同投资方案在一定车辆行为规律情况下的服务容量、设备闲置率、盈利能力、投资效率问题。在所建立的换电站运营模型中,换电站以最大化可服务车辆数作为自己的运营目标,并同时考虑到站内设备的循环使用。运营模型为电动汽车的服务设备进行了多种分类,电动汽车对每一类设备的使用时间长度均服从不同的分布,车辆具有换电需求时,仅当其获得了所有需要的设备后才会开始进行服务。运营模型在分时电价的情景下,在不提高最小储备电池需求数量的前提下,将部分电池安排至低谷电价时进行充电,以此降低换电站的运营成本。该研究为换电站优化设备配置、提高收益能力和投资效率等问题研究打下了基础,也可为充电模式下电动汽车集中式充电站、分布式充电桩建设的相关研究提供借鉴。
[Abstract]:With the development of economy and the continuous improvement of people's living standard, the amount of car in China is growing rapidly, which poses a serious threat to the ecological environment. In energy saving and emission reduction policy driven, renewable energy generation will be rapid development. The electric car is the best complementary renewable energy, the development of electric vehicles can not only meet the needs of people to travel, but also can to promote energy-saving emission reduction, is the strategic direction of the development of China's automobile industry.
Electric vehicle access to the power system not only has a positive impact, but also have a negative impact. The safety of electric vehicle load law uncertainty on the power system and the reliable operation of challenge, a large number of negative - electric vehicle access may cause some time significantly increased, if the vehicle charging time to load the evening rush hour then, the safe and reliable operation of the power grid more unfavorable, disorderly charging electric vehicles may also result in increase the network loss of power system, power quality decline, the adverse effects of load peak valley ratio increases; at the same time, the active behavior and storage of electric vehicle special characteristics for the power system to achieve renewable energy consumption, peak load provides favorable conditions. However, as the basic effect of electric vehicle access to the power system, the law of demand for electric vehicle battery, negative charge Dutch law, related research on active space problem is still weak; on the other hand, the massive popularity of electric vehicles depends on the improvement of the service network, the research on the service capacity and profitability but currently addressing a centralized service facility sizing scheme less, cause uncertainty centralized service facility layout scheme and equipment capacity configuration generated by the service capacity, profitability and uncertainty, this problem also affects the enthusiasm of investment in electric car service facilities, may delay the construction of service network, the adverse effects on the development of electric vehicle industry.
Therefore, it is necessary to solve the above problems, the law of demand for electric vehicle battery, the charging load law of the active space, lay the foundation for further study of large-scale electric vehicle access impact on power system; at the same time it is necessary for the electric vehicle charging station distribution and service capacity in the construction of centralized service station study, profitability, in order to realize the actual investment before construction for layout, station capacity allocation plan service capacity prediction, profitability estimates for layout optimization, to lay the foundation for the study in optimizing the allocation of resources and other issues.
The main work and innovation results of this paper are as follows:
(1) in the premise of the vehicle driving rules and, combined with the electric vehicle charging mode for electric power to the two characteristics of the way, using Monte Carlo method to realize the vehicle battery, changes in demand, to supplement the behavior of electrical timing simulation, the number of large-scale electric vehicles in electric mode battery demand rules and minimum reserve battery in the scenario set, electricity demand rule in the charging mode and plug charging charging and charging load law, for the active space for electric two modes. The travel distance of travel time, vehicle in one day in each simulation, each time the speed of random variables are extracted, driving, clear the specific electric vehicle quiescent period of time in a day, so the electric vehicle power consumption process is described, based on the electric vehicle for electricity Model, different characteristics of the charging mode, the remaining power combined with the vehicle, parking time and other factors, with the specific time demand analysis of vehicles. A combination of electric vehicles in the simulation with a regular power demand, and consider the reserve battery cycle for electric mode, minimum battery reserve requirements, and the electric vehicle charging mode can the network time, two kinds of power are of electric vehicles. The research is carried out orderly charging of electric vehicle control, capacity planning of electric vehicle charging facilities, electric vehicles and power grid interactive technology (V2G), renewable energy consumption, electric vehicle load on power load, power quality, based on power grid the influence of economic operation.
(2) proposed a city distribution program in a region on the cost calculation method. Considering the vehicle density differences and regional differences in the road network construction, establish the directed graph transferred to two tree traversal, in order to determine the optimal path and optimal behavior model of electric vehicle station through the timing simulation on the behavior of the vehicle, the realization of the calculation circuit cost change distribution program, and studied the change on the cost of power plant on the circuit layout of the service capacity and the effect of the average load for power plants. Classified by treat analysis of regional road network information, will be simplified as grid information, vehicle location within the region the destination location, to describe the spatial relationship of the three station location, within the region to achieve a transfer station layout scheme on the cost calculation, and based on the areas of a city of cloth The service capacity of the point plan is studied. The research is the basis for optimizing the layout of the power station, changing the capacity of the power station, and estimating the profit of the distribution plan, and at the same time, this method can also provide a useful reference for the related research of the centralized charging station.
(3) established for the operation of the power station. The model established to maximize the service capacity as the goal, through the vehicle behavior and driving timing simulation. The demand for electricity as a source of input queuing, many types of equipment form queuing system services, and considers the vehicle waiting timeout exit in the model, the classification of equipment with Business Hours tou, under the planned charging, batteries, power plant operation model for minimum equipment investment, of different investment schemes in certain vehicle behavior under the service capacity, equipment idle rate, profitability, investment efficiency. In the power plant operation model for the establishment of the station, the maximum number of vehicles can serve as their operational objectives, and taking into account the station equipment recycling. Service equipment operation model for electric vehicles are electric vehicles for each variety of categories. The use of the length of time a class of equipment are subject to different distribution, with demand for electric vehicles, only when it obtained all the necessary equipment will be started after service. The operation model of price in the situation, without an increase in the number of minimum reserve battery demand, will be part of the battery arrangement to the low price when charging, in order to reduce the operation cost for power plants. The study for the optimization problem of power plant equipment, improve profitability and investment efficiency can also lay the foundation for electric vehicle charging station centralized charging mode, distributed charging pile construction can provide a reference for related research.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM910.6;U469.72
【参考文献】
相关期刊论文 前10条
1 赵俊华;文福拴;薛禹胜;董朝阳;辛建波;;计及电动汽车和风电出力不确定性的随机经济调度[J];电力系统自动化;2010年20期
2 杨永标;丁孝华;朱金大;白义传;;物联网应用于电动汽车充电设施的设想[J];电力系统自动化;2010年21期
3 吴春阳;黎灿兵;杜力;曹一家;;电动汽车充电设施规划方法[J];电力系统自动化;2010年24期
4 赵明宇;王刚;汪映辉;孙广明;;电动汽车充电设施监控系统设计与实现[J];电力系统自动化;2011年10期
5 赵俊华;文福拴;杨爱民;辛建波;;电动汽车对电力系统的影响及其调度与控制问题[J];电力系统自动化;2011年14期
6 徐立中;杨光亚;许昭;F.MARRA;C.TR■HOLT;;电动汽车充电负荷对丹麦配电系统的影响[J];电力系统自动化;2011年14期
7 于大洋;宋曙光;张波;韩学山;;区域电网电动汽车充电与风电协同调度的分析[J];电力系统自动化;2011年14期
8 罗卓伟;胡泽春;宋永华;杨霞;占恺峤;吴俊阳;;电动汽车充电负荷计算方法[J];电力系统自动化;2011年14期
9 任玉珑;史乐峰;张谦;韩维建;黄守军;;电动汽车充电站最优分布和规模研究[J];电力系统自动化;2011年14期
10 李如琦;苏浩益;;基于排队论的电动汽车充电设施优化配置[J];电力系统自动化;2011年14期
,本文编号:1607008
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1607008.html