当前位置:主页 > 科技论文 > 电力论文 >

碱性阴离子交换膜燃料电池水热管理的实验及仿真研究

发布时间:2018-03-16 01:37

  本文选题:碱性阴离子交换膜燃料电池 切入点:水热管理 出处:《天津大学》2014年硕士论文 论文类型:学位论文


【摘要】:随着人类社会的发展,人们对能源效率及环境保护的要求越来越高,燃料电池以其启动快、效率高、噪声低、污染小的特点得到了越来越多的关注。在燃料电池中,碱性阴离子交换膜燃料电池(Alkaline membrane fuel cell,AMFC)具有较高的电化学动力学特性、较低的贵金属催化剂依赖性以及较好的二氧化碳耐受性。因而,近年来受到了国内外广泛的讨论与研究。在AMFC的研究领域中,水热管理是制约其性能、成本和耐久性的关键因素之一。因此,研究其中的水热管理问题及传热传质过程,对了解AMFC工作机理、制定水热管理策略具有十分重要的意义。首先,本研究通过制备AMFC膜电极、组装燃料电池、搭建实验系统,在不同工况条件下测试了AMFC的性能。结果表明,AMFC的激活过程分为两个阶段,第一个阶段为性能提升阶段,第二个阶段为性能衰减并达到稳定的阶段。同时,阴阳两极进气加湿能十分显著地提升电池性能,并且阴极进气加湿的作用更为明显。此外,负载的增加和减小分别会引起电流密度的过冲和下冲,而且过冲及下冲的幅度会随着负载变化的增加及加载时间的缩短而加剧。其次,为了进一步了解AMFC的水热管理及传热传质机理,本研究建立了AMFC全电池的三维多相流数值模型。该模型模拟了电池内部的化学反应、质量传输、动量传输、能量传递和水的相变等过程,并与实验结果吻合较好。再次,通过建立的AMFC三维多相流数值模型,本研究分析了稳态条件下阴阳两极进气加湿、工作温度、膜厚度和膜电极疏水性等工况条件及设计参数对燃料电池性能及传热传质过程的影响。研究发现,阳极进气加湿可以提升AMFC性能,但其作用会随着加湿程度的增加而减弱。阴极进气加湿对性能的提升作用更加显著,并且高负载条件下,阴极流道中的液态水供给会进一步提高电池性能。最后,本研究分析了AMFC对负载、阴阳两极进气加湿、工作温度等工况的动态响应。在循环负载工况中,负载的加载顺序对AMFC的性能有一定影响,并且加湿程度越低,影响越显著。此外,由阴阳两极进气相对湿度降低引起的膜态水及液态水的去除速度要快于由相对湿度增加而引起的补充速度。
[Abstract]:With the development of human society, more and more attention has been paid to the energy efficiency and environmental protection. Fuel cells have attracted more and more attention because of their characteristics of fast start-up, high efficiency, low noise and low pollution. Alkaline membrane fuel cell has higher electrochemical kinetic characteristics, lower noble metal catalyst dependence and better carbon dioxide tolerance. In recent years, it has been widely discussed and studied at home and abroad. In the research field of AMFC, water and heat management is one of the key factors restricting its performance, cost and durability. It is of great significance to understand the working mechanism of AMFC and to formulate the strategy of hydrothermal management. Firstly, through the preparation of AMFC membrane electrode, the fuel cell is assembled and the experimental system is built. The results show that the activation process of AMFC is divided into two stages: the first stage is the performance improvement stage, the second stage is the performance decay and reach the stable stage. The effect of cathode inlet humidification is more obvious. In addition, the increase and decrease of load will cause overshoot and downrush of current density, respectively. Moreover, the amplitude of overshoot and downrush will be aggravated with the increase of load change and the shortening of loading time. Secondly, in order to further understand the mechanism of hydrothermal management and heat and mass transfer of AMFC, In this paper, a three-dimensional multiphase flow numerical model of AMFC whole cell is established. The model simulates the chemical reaction, mass transfer, momentum transfer, energy transfer and phase transition of water in the battery, and the results are in good agreement with the experimental results. Based on the numerical model of AMFC three-dimensional multiphase flow, the humidification and working temperature of Yin and Yang inlet air under steady condition are analyzed. Effects of operating conditions such as membrane thickness and hydrophobicity of membrane electrode and design parameters on the performance of fuel cell and heat and mass transfer process. It is found that anode inlet humidification can improve the performance of AMFC. But its effect will weaken with the increase of humidification degree. The effect of cathode inlet humidification on performance is more significant, and the liquid water supply in cathode channel will further improve the performance of the battery under high load conditions. In this paper, the dynamic response of AMFC to the load, the inlet air humidification of both yin and yang, the working temperature and so on is analyzed. In the cyclic load condition, the loading sequence of the load has a certain influence on the performance of AMFC, and the wetting degree is lower. In addition, the removal rate of membrane water and liquid water caused by the decrease of relative humidity of inlet air between the two poles is faster than that caused by the increase of relative humidity.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM911.4

【相似文献】

相关期刊论文 前10条

1 ;直接使用甲烷的新燃料电池[J];现代化工;2000年01期

2 ;燃料电池[J];化学工程师;2000年02期

3 徐德新,诸亦新;燃料电池的开发现状与应用前景[J];江苏冶金;2000年02期

4 ;新型能源燃料电池[J];精细化工基地信息通讯;2000年06期

5 秦卫;;燃料电池的现状[J];轻型汽车技术;2000年06期

6 余亮;;燃料电池储氢新技术[J];轻型汽车技术;2000年Z1期

7 丰洋;天然气膜法脱氮用于燃料电池[J];石油与天然气化工;2001年02期

8 ;我研发出国际先进水平燃料电池[J];稀有金属;2001年04期

9 ;形形色色的锂电池和燃料电池[J];福建轻纺;2001年06期

10 刘四华;国外燃料电池的开发与研究[J];化学工程师;2001年03期

相关会议论文 前10条

1 ;科学家为燃料电池开发新催化剂[A];节能减排论坛——福建省科协第八届学术年会卫星会议论文专刊[C];2008年

2 郭晓汾;张毅;;燃料电池车辆及其新进展[A];河南省汽车工程学会第二届科研学术研讨会论文集[C];2005年

3 许谷;;燃料电池——改变未来世界的新科技——燃料电池系统中关键部分的研究[A];材料科学与工程技术——中国科协第三届青年学术年会论文集[C];1998年

4 宋二虎;;电动自行车用燃料电池的产业化之路[A];电动车及新型电池学术交流会论文集[C];2003年

5 于泽庭;韩吉田;;燃料电池在家庭中的应用[A];山东省第五届制冷空调学术年会论文集[C];2004年

6 陆天虹;张玲玲;唐亚文;高颖;;各种燃料电池在产业化概况[A];2006中国动力电池高层论坛论文集[C];2006年

7 宫振华;张存满;肖方f,

本文编号:1617787


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1617787.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c9a6c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com