结合超级电容和锂电池的电流互感器取能电源研究
发布时间:2018-04-05 02:22
本文选题:在线监测设备 切入点:电流互感器 出处:《重庆大学》2014年硕士论文
【摘要】:输电线路在电网构架中承担着电能输送的作用,若发生故障后将对整个电网造成巨大影响,在线监测技术为输电线路的安全运行提供了保障。由于输电线路电压等级高,所处环境复杂,监测设备的电源供给问题一直是制约在线监测技术发展的瓶颈之一。 本文对现有供电电源进行了归纳总结,并在前人研究的基础上,针对本实验室的雷电计数器远程监测系统研制了一种结合超级电容和锂电池的电流互感器(CT)取能电源。该电源利用CT通过电磁感应从高压侧输电线路上截取能量,经过后续电路处理后输出稳定直流电压为监测设备供能。研究CT进行功率传输的基本电磁关系,建立取能电源等效电路模型,分析各参数对CT输出功率的影响,实现参数匹配以保证CT处于高效率取能状态。依照分级供能的原则对电源进行系统和硬件电路设计,使用锂电池作为备用电源,针对线路电流的变化使电源工作在不同状态,电源具有良好的适应性。利用超级电容的电压钳制作用有效防止铁芯饱和,其瞬时大功率特性能够满足带有通信模块的监测设备的需求;锂电池作为备用电源在线路电流较小时自动接入为监测设备续能,消除了取能死区;开关管和继电器自动调节电源工作状态,以适应线路电流的大范围变化;过压保护、过流保护、锂电池充放电保护模块有效的保证了电源安全稳定的运行。 通过模拟实验对电源的不同工作状态进行测试,结果表明:在0到800A的线路电流范围内,铁芯均不会饱和,电源能以5V直流电压实现2.5W稳定功率输出,例如:当线路电流小于70A时,电源需锂电池辅助供能(输电线彻底断电时,,锂电池能单独供能2小时以内);线路电流大于70A时,电源通过超级电容能单独供能,并同时对锂电池进行充电。此外,电源具备瞬时大功率特性,可瞬时输出12W以上功率。 可见,本文所研制的CT取能电源能在宽范围线路电流下为监测设备实现稳定供能,无取能死区,且能提供瞬时大功率。
[Abstract]:Transmission line plays the role of power transmission in the frame of power grid. If failure occurs, it will have a great impact on the whole power network. On-line monitoring technology provides a guarantee for the safe operation of transmission lines.Because of the high voltage level of transmission line and the complex environment, the power supply problem of monitoring equipment has been one of the bottlenecks restricting the development of on-line monitoring technology.In this paper, the existing power supply is summarized, and based on the previous research, a kind of current transformer CTS based on super capacitor and lithium battery is developed for the remote monitoring system of lightning counter in our laboratory.The power supply uses CT to intercept the energy from the transmission line on the high voltage side by electromagnetic induction, and outputs the stable DC voltage to supply energy for the monitoring equipment after the subsequent circuit processing.The basic electromagnetic relation of CT power transmission is studied, the equivalent circuit model of the power source is established, the influence of each parameter on the output power of CT is analyzed, and the parameter matching is realized to ensure that CT is in the state of high efficiency.According to the principle of graded energy supply, the system and hardware circuit of the power supply are designed. The lithium battery is used as the backup power source. The power supply has good adaptability to the variation of the line current.Using the voltage clamping action of super capacitor to prevent iron core saturation effectively, its instantaneous high power characteristic can meet the needs of monitoring equipment with communication module.Lithium battery as a backup power supply automatically connected to monitor equipment when the line current is small, eliminates the dead zone of energy collection, switches and relays automatically adjust the working state of the power supply to adapt to the wide range variation of line current, overvoltage protection,Over-current protection, lithium battery charge and discharge protection module effectively ensures the safe and stable operation of the power supply.The different working states of the power supply are tested by simulation experiments. The results show that the core is not saturated in the range of 0 to 800A, and the power supply can achieve 2.5W steady power output at 5V DC voltage.For example, when the line current is less than 70A, the power supply needs a lithium battery auxiliary energy supply (when the transmission line is completely off, the lithium battery can supply energy alone within 2 hours; when the line current is greater than 70A, the power supply can be supplied separately through a super capacitor.At the same time, the lithium battery is charged.In addition, the power supply with instantaneous high power characteristics, instantaneous output of more than 12 W power.It can be seen that the CT power supply developed in this paper can provide stable energy supply for the monitoring equipment under a wide range of line currents without dead zone and can provide instantaneous high power.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM452
【参考文献】
相关期刊论文 前10条
1 李澎,蔡志斌,罗承沐;光电电流互感器的供能电路的研究[J];电工电能新技术;2003年04期
2 张超;赵德安;;太阳能电池在电子电流互感器高压侧供能的研究[J];电力电子技术;2009年04期
3 吴功平;肖晓晖;肖华;戴锦春;鲍务均;胡杰;;架空高压输电线路巡线机器人样机研制[J];电力系统自动化;2006年13期
4 李先志;杜林;陈伟根;王有元;孙才新;李t熝
本文编号:1712774
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1712774.html