当前位置:主页 > 科技论文 > 电力论文 >

并网型光伏电站中央监控与能量管理系统的研究与实现

发布时间:2018-04-22 11:28

  本文选题:光伏发电 + 中央监控 ; 参考:《华北电力大学》2014年硕士论文


【摘要】:近年来,可再生能源的开发利用已成为国民经济可持续发展的重要组成部分,太阳能光伏产业发展迅速。光伏电站装机容量的不断增加,如何更好地对并网光伏电站内的设备进行实时监控、运行和维护,确保光伏电站的安全稳定运行成为了研究的热点。另外,大规模光伏发电集中并网对电网运行会产生影响,为了保证电力系统稳定性,电网调度部门会向光伏电站下发调度指令,光伏电站需响应调度指令实现整个光伏电站的有功优化分配和调节。 本文设计并开发了一套兼容性能和扩展性能良好的并网光伏电站中央监控和能量管理系统,实现了对光伏电站内部所有设备的统一运行监控;对光伏电站内的运行数据进行了集中管理;为光伏电站发电功率预测等高级应用系统提供了可靠的数据接口;并可以自动接收调度中心主站下发的有功功率控制指令,自动控制各个并网逆变器,使光伏电站在满足调度要求的基础上安全稳定运行。 光伏电站输出功率预测可以为光伏电站的有功功率控制提供数据支持。本文对影响光伏阵列发电功率的气象因子进行了通径分析,得到了各个气象因子对光伏发电功率的影响权重,自定义了相似度统计量。通过将历史日样本分类和预测日相似日的选取,以光伏电站内的逆变器为基本预测单元,基于BP神经网络建立预测模型,对光伏电站内各个并网逆变器的输出功率进行短期预测。以并网逆变器输出功率短期预测的结果为基础,研究了光伏电站有功功率控制策略,,并验证了控制策略的有效性和可行性。
[Abstract]:In recent years, the development and utilization of renewable energy has become an important part of the sustainable development of the national economy, and the solar photovoltaic industry has developed rapidly. With the increasing of the installed capacity of photovoltaic power station, how to monitor, operate and maintain the equipment in grid-connected photovoltaic power station in real time and ensure the safe and stable operation of photovoltaic power station has become a hot research topic. In addition, the centralized grid connection of large-scale photovoltaic power generation will have an impact on the operation of the power network. In order to ensure the stability of the power system, the power grid dispatching department will issue dispatching orders to the photovoltaic power station. Photovoltaic power plants need to respond to dispatching instructions to achieve optimal allocation and regulation of active power in the whole photovoltaic power plant. This paper designs and develops a central monitoring and energy management system for grid-connected photovoltaic power plants with good compatibility and expansibility. It provides a reliable data interface for advanced application systems such as photovoltaic power generation power prediction, and can automatically receive active power control instructions from the main station of the dispatching center. Each grid-connected inverter is automatically controlled to make the photovoltaic power station run safely and stably on the basis of meeting the dispatching requirements. The output power prediction of photovoltaic power station can provide data support for active power control of photovoltaic power station. In this paper, the path analysis of meteorological factors affecting photovoltaic array power generation is carried out, and the influence weights of each meteorological factor on photovoltaic power generation power are obtained, and the similarity statistics are defined. By classifying the samples of historical days and selecting the similar days of forecasting days, taking the inverter in photovoltaic power station as the basic prediction unit, the prediction model is established based on BP neural network. The output power of each grid-connected inverter in photovoltaic power station is predicted in short term. Based on the short-term prediction of the output power of grid-connected inverter, the active power control strategy of photovoltaic power plant is studied, and the effectiveness and feasibility of the control strategy are verified.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM615

【参考文献】

相关期刊论文 前10条

1 陈昌松;段善旭;殷进军;;基于神经网络的光伏阵列发电预测模型的设计[J];电工技术学报;2009年09期

2 陈昌松;段善旭;蔡涛;代倩;;基于模糊识别的光伏发电短期预测系统[J];电工技术学报;2011年07期

3 康重庆,程旭,夏清,沈瑜;一种规范化的处理相关因素的短期负荷预测新策略[J];电力系统自动化;1999年18期

4 丁明;徐宁舟;;基于马尔可夫链的光伏发电系统输出功率短期预测方法[J];电网技术;2011年01期

5 王晓兰;葛鹏江;;基于相似日和径向基函数神经网络的光伏阵列输出功率预测[J];电力自动化设备;2013年01期

6 徐瑞;滕贤亮;张小白;庞涛;丁茂生;马军;;大规模光伏有功综合控制系统设计[J];电力系统自动化;2013年13期

7 周念成;闫立伟;王强钢;;光伏发电在微电网中接入及动态特性研究[J];电力系统保护与控制;2010年14期

8 张勇军;陈超;许亮;;基于模糊聚类和相似度的电力系统可靠性原始参数预估[J];电力系统保护与控制;2011年08期

9 张艳霞;赵杰;;基于反馈型神经网络的光伏系统发电功率预测[J];电力系统保护与控制;2011年15期

10 丁明;王磊;毕锐;;基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J];电力系统保护与控制;2012年11期



本文编号:1786974

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1786974.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b2024***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com