当前位置:主页 > 科技论文 > 电力论文 >

波导结构水负载大功率计的研究

发布时间:2018-05-05 14:06

  本文选题:水负载 + 匹配 ; 参考:《电子科技大学》2014年硕士论文


【摘要】:随着大功率微波在国内外得到越来越多的关注和发展,大功率微波的测量也成为科研工作者所重点研究的对象。对于大功率微波,不可能使用常规的仪器进行测量,通常利用微波功率计进行测量。其中运用较多的就是水负载大功率计。水负载大功率计不仅功率容量大而且其工作频带范围较宽,再加上其体积小、结构简单,通常放置于雷达发射机中的终端。同时它作为系统匹配负载来使用,是微波系统中的关键器件。目前国内外对于宽频带大功率计的研究甚少,难以满足微波系统发展的需求;窄带大功率计在工作的频率低的情况下,尺寸方面不太理想。针对这些情况,本文对两种波导结构水负载大功率计进行了研制。主要工作内容如下:首先,设计出一种超宽带波导结构水负载大功率计,其频率范围为6.5GHz~18GHz,最大吸收功率为2KW,水负载波导部分外壳采用硬铝,水室部分外壳采用不锈钢,波导口斜切角度为3.2°,微波辐射口的介质片的材料选取为介电常数9.3的高密度氧化铝陶瓷基片(Al2O3),水的密封圈采用的是耐热200度并且无毒防水好的丁腈橡胶O型圈;其次,设计出一种窄带波导结构水负载大功率计,其频率范围为2.35GHz~2.55GHz,最大吸收功率为5KW,水负载外壳波导部分外壳采用硬铝,水室部分采用不锈钢,波导口斜切角度为10.5°,微波辐射口的介质片的材料是介电常数为9.3的高密度氧化铝陶瓷基片(Al2O3),水的密封圈采用的是丁腈橡胶O型圈;最后,对超宽带波导结构水负载在不同水温下进行测试,并提出两种功率测试方案。其研制的主要技术难点有以下几个方面:功率容量比较大、反射要尽可能的小(即驻波比尽可能的低)、仿真计算难度比较大且耗时较多、密封性能要好和工艺要求比较高等等。通过科研攻关,已成功研制出超宽带波导结构水负载大功率计,带内电压驻波比小于1.2,最大功率容量达到2kW。同是窄带波导结构水负载大功率计也通过仿真得到了很好的优化结果,带内电压注波比小于1.06,远远小于指标规定的1.15,正在进行后期的加工和装配工作。
[Abstract]:With the increasing attention and development of high-power microwave at home and abroad, the measurement of high-power microwave has become the focus of research. For high power microwave, it is not possible to use conventional instruments to measure, usually by microwave power meter. Among them, water load high power meter is used more. The water-loaded high-power meter is not only of large power capacity but also has a wide range of operating frequency band. In addition, it is small in size and simple in structure, so it is usually placed in the terminal of radar transmitter. At the same time, it is used as system matching load, and it is the key device in microwave system. At present, there is little research on broadband high-power meter at home and abroad, which is difficult to meet the needs of microwave system development, and narrow band high-power meter is not ideal in size when the frequency is low. In order to solve these problems, two kinds of water-loaded high power meters with waveguide structure are developed in this paper. The main work is as follows: firstly, a kind of ultra-wideband waveguide structure water-loaded high-power meter is designed, the frequency range is 6.5 GHz ~ (18 GHz), the maximum absorption power is 2 KW, the water-loaded waveguide shell is made of hard aluminum, and the water chamber part shell is stainless steel. The bevel angle of waveguide mouth is 3.2 掳, the material of microwave radiator dielectric slice is high density alumina ceramic substrate Al _ 2O _ 3 with dielectric constant 9.3, the sealing ring of water is heat-resistant 200 degrees and non-toxic waterproof nitrile rubber O ring; secondly, A water loaded high power meter with narrow band waveguide structure is designed. Its frequency range is 2.35 GHz ~ (2. 55 GHz) and the maximum absorption power is 5 KW. The shell of the water-loaded shell is made of hard aluminum, and the part of the water chamber is stainless steel. The angle of oblique cut of waveguide mouth is 10.5 掳, the material of dielectric slice of microwave radiator is high density alumina ceramic substrate Al _ 2O _ 3 with dielectric constant 9.3, the sealing ring of water is butadiene acrylonitrile rubber O-ring. The water load of UWB waveguide structure is measured at different water temperature, and two kinds of power measurement schemes are proposed. The main technical difficulties of its development are as follows: the power capacity is large, the reflection should be as small as possible (that is, the standing wave ratio is as low as possible, the simulation calculation is difficult and time-consuming, the sealing performance is good and the process requirement is high, etc.) Through scientific research, a water-loaded high-power meter with ultra-wideband waveguide structure has been successfully developed. The in-band voltage standing wave ratio is less than 1.2, and the maximum power capacity is 2 kW. The water load high power meter with narrow band waveguide structure is also optimized by simulation. The in-band voltage beam-wave ratio is less than 1.06, which is far less than 1.15 specified by the index, so it is being processed and assembled in the later stage.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM933.3

【共引文献】

相关期刊论文 前10条

1 李丽英;;低压电网漏电故障探测器的研究[J];北京农业工程大学学报;1990年02期

2 徐云,,徐霞;锁相无调式数字相位仪[J];电测与仪表;1994年03期

3 翁泰来;;厅堂扩声特性测量方法中最大声压级的规定和测量的有关问题[J];电声技术;2006年02期

4 邓元;;铁氧体磁心的(有效)振幅磁导率测量[J];仪表材料;1989年03期

5 马献果,孙玉杰,李雪丽,梁宏伟;一种高精度的频率标准比对系统[J];河北工业科技;2003年06期

6 吴佳琪,童和钦,吴倍玉;运用产品的CPU实现印制板组件的自动检测[J];南京化工大学学报(自然科学版);2000年04期

7 童和钦,吴倍玉,周超;微机控制设备部件检测技术的新思路——以产品自身资源为平台的自动检测技术[J];南京化工大学学报(自然科学版);2000年04期

8 江基纯;微波漏能测试仪的校准方法[J];上海航天;1992年01期

9 孙桥,于梅;振动幅相特性测量系统溯源问题的研究[J];现代测量与实验室管理;2003年05期

10 李汉军;频率的等精度测量[J];仪表技术;1999年03期

相关硕士学位论文 前1条

1 向前进;基于嵌入式PLC的高速输入输出节点的开发[D];华中科技大学;2007年



本文编号:1847979

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1847979.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ef3d6***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com