当前位置:主页 > 科技论文 > 电力论文 >

直接乙醇燃料电池铂、钯基阳极催化剂合成及其机理研究

发布时间:2018-05-19 03:15

  本文选题:直接乙醇燃料电池 + 阳极催化剂 ; 参考:《福州大学》2014年博士论文


【摘要】:直接乙醇燃料电池(DEFC)是一种非常有前景的燃料电池技术,有望应用于移动电子设备、电动汽车和发电站等。目前阻碍DEFC应用发展的主要原因是阳极催化剂的催化反应活性低并且价格高昂。本文主要寻找DEFC阳极催化剂的新材料和新制备方法,利用物理表征所制备的不同催化剂材料具有的合金化程度、平均粒径、形貌、结构和成分组成等物理特性,并研究催化剂的物理特性与对电化学性能之间的构效关系,得到以下主要结果:以MnOx-CNTs复合材料作为载体,采用微波乙二醇还原制备Pt/MnOx-CNTs催化剂。研究表明:Pt纳米颗粒均匀地分散在载体上,其平均粒径2.2nm。催化剂中Mn元素以多种价态形式存在,有利于溶液中H+离子的传递;MnOx-CNTs复合载体中MnOx与CNTs最优的质量含量比为1:1,Pt/MnOx-CNTs (1:1)催化剂在酸性介质中对乙醇电催化氧化的峰电流密度为1141.4 mA mg-1 Pt,是Pt催化剂(626.4 mA mg-1 Pt)的1.8倍,MnOx在乙醇阳极氧化过程中即可以促进脱氢反应,又能够增加含氧物种,明显促进了除去催化剂表面中毒中间产物能力。选择低成本Pd作为基体,通过微波乙二醇法还原制备PdM/C (M=Te, Sb)二元催化剂,研究表明:PdTex/C和PdSbx/C催化剂中存在合金相;加入Te和Sb均能增加催化剂表面含氧物种,提高催化剂对毒性中间产物的氧化除去,促进乙醇吸附和进一步氧化。乙醇电催化氧化峰电流密度在PdTe1.5/C和PdSb0.15/C催化剂上分别为190.3 mA cm-2和117.5 mA cm-2,是Pd/C催化剂的2.8倍和1.7倍。在室温条件下,采用自组装法合成了PdBi/C和Cu@PdCu/C催化剂,研究表明:(1)Bi3+离子容易在Pd粒子上发生不可逆吸附可便捷高效地合成PdBi/C催化剂。Pd吸附Bi后,催化剂粒径相比于吸附前的Pd粒子增大,沉积的Bi物种多以氧化态形式存在,并与Pd之间存在强电子相互作用,并促进Pd对溶液中OH"吸附,提高催化剂氧化毒性中间产物的能力,乙醇阳极氧化峰电流密度在PdBi/C (20:1)催化剂上为180.5 mA cm-2,是Pd/C的2.4倍;(2)通过Pd2+离子和Cu粒子的静电取代合成Cu@PdCu/C催化剂,该催化剂具有Cu内核和PdCu合金外壳层结构,外壳层厚度约为0.5nnm;核壳结构提高了Pd的利用率,且外壳层PdCu合金能够提高催化剂表面含氧物种生成,促进表面毒性物种的氧化去除,从而提高催化剂对乙醇的电催化氧化活性,Cu@PdCu/C催化剂对乙醇电氧化的活性为166.0 mA cm-2,是Pd/C(硼氢化钠还原)的2.8倍。
[Abstract]:Direct ethanol fuel cell (DEFC) is a promising fuel cell technology, which is expected to be used in mobile electronics, electric vehicles and power plants. At present, the main obstacle to the development of DEFC application is the low catalytic activity and high price of the anode catalyst. In this paper, a new material and a new preparation method for DEFC anode catalyst are sought. The physical properties of the different catalyst materials are characterized by physical properties, such as alloying degree, average particle size, morphology, structure and composition. The structure-activity relationship between the physical properties and electrochemical properties of the catalyst was studied. The main results were as follows: the Pt/MnOx-CNTs catalyst was prepared by microwave ethylene glycol reduction with MnOx-CNTs composite as the carrier. The results show that the particles are uniformly dispersed on the support, and the average particle size is 2.2 nm. Mn exists in various valence states in the catalyst. The optimum mass ratio of MnOx to CNTs is 1: 1 Pt- Mn-Ox-CNTs 1: 1) the peak current density of ethanol electrocatalytic oxidation in acidic medium is 1141.4 Ma mg-1 PT, which is Pt catalyst 626.4 Ma mg-1. 1.8-fold MNO _ x can promote the dehydrogenation reaction in the process of ethanol anodic oxidation. It can also increase the oxygen species and obviously promote the ability to remove the intermediate products from the surface poisoning of the catalyst. Using low cost PD as the matrix, the binary catalyst of PdM/C / MMT Te- (SB) was prepared by microwave ethylene glycol reduction. The results showed that there were alloy phases in the catalyst of w / PdTexr / C and PdSbx/C, and the addition of Te and SB could increase the oxygen-containing species on the surface of the catalyst. The oxidation removal of toxic intermediate products by catalyst was improved, and ethanol adsorption and further oxidation were promoted. The peak current density on PdTe1.5/C and PdSb0.15/C is 190.3 Ma cm-2 and 117.5 Ma cm-2 respectively, which is 2.8-fold and 1.7-fold higher than that of Pd/C catalyst. At room temperature, PdBi/C and Cu@PdCu/C catalysts were synthesized by self-assembly method. The results show that the irreversible adsorption of PdBi/C catalyst. PD can easily and efficiently adsorb Bi on PD particles. The particle size of the catalyst is larger than that of the PD particles before adsorption. The deposited Bi species exist in the form of oxidation, and there is a strong electron interaction with PD, which also promotes the adsorption of OH "in solution by PD." The peak current density of ethanol anodic oxidation was 180.5 Ma cm-2 on PdBi/C 20: 1 catalyst, which was 2.4-fold of that of Pd/C. Cu@PdCu/C catalyst was synthesized by electrostatic substitution of Pd2 ion and Cu particle. The catalyst has Cu core and PdCu alloy shell structure, the shell thickness is about 0.5 nm, the core-shell structure increases PD utilization rate, and the shell layer PdCu alloy can improve the formation of oxygen species on the surface of the catalyst and promote the oxidation removal of surface toxic species. Thus, the electrocatalytic oxidation activity of the catalyst for ethanol was improved by 166.0 Ma cm-2, which was 2.8 times higher than that of PD / C (reduction of sodium borohydride).
【学位授予单位】:福州大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:O643.36;TM911.4

【相似文献】

相关期刊论文 前10条

1 王树博;王要武;谢晓峰;汪浩;严辉;;直接甲醇燃料电池阳极催化剂的制备[J];化工进展;2006年06期

2 李金峰;宋焕巧;邱新平;;直接甲醇燃料电池阳极催化剂的研究进展[J];电源技术;2007年02期

3 税安泽;夏海斌;刘平安;曾令可;王慧;程小苏;;直接甲醇燃料电池阳极催化剂的研究进展[J];材料导报;2007年S3期

4 鞠剑峰;吴东辉;;直接甲醇燃料电池阳极催化剂的研究进展[J];化工进展;2009年04期

5 杨民力;;直接甲醇燃料电池铂基阳极催化剂碳载体发展[J];材料导报;2010年07期

6 周卫江,周振华,李文震,孙公权,辛勤;直接甲醇燃料电池阳极催化剂研究进展[J];化学通报;2003年04期

7 罗远来;梁振兴;廖世军;;直接甲醇燃料电池阳极催化剂研究进展[J];催化学报;2010年02期

8 杨民力;;直接甲醇燃料电池铂基阳极催化剂的非碳载体[J];稀有金属;2010年03期

9 张敏;唐艳茹;丁鹏;赵仑;;直接甲醇燃料电池阳极催化剂进展中粒径和载体的作用[J];长春师范学院学报;2013年10期

10 高文君;郑颖平;查燕;孙岳明;;甲烷为燃料的固体氧化物燃料电池阳极催化剂研究进展[J];江苏化工;2008年04期

相关会议论文 前10条

1 张日清;周震涛;;直接甲醇燃料电池三元阳极催化剂的研制[A];电动车及新型电池学术交流会论文集[C];2003年

2 吕清叶;杨波;庄林;陆君涛;;纳米Pt-Ru催化剂构效关系的模式识别[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年

3 邢巍;陆天虹;;直接醇燃料电池阳极催化剂研究[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年

4 刘军民;蔡育芬;廖世军;;直接甲醇燃料电池阳极催化剂PtMoSi/C的制备和表征[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年

5 王耀辉;高山;李良琼;姜春萍;陈金伟;王瑞林;;直接甲醇燃料电池阳极催化剂的PtRu/C的制备及表征[A];2008 International Hydrogen Forum Programme and Abstract[C];2008年

6 王耀辉;高山;李良琼;姜春萍;陈金伟;王瑞林;;直接甲醇燃料电池阳极催化剂的PtRu/C的制备及表征[A];中国化学会第26届学术年会新能源与能源化学分会场论文集[C];2008年

7 陆天虹;;直接甲酸燃料电池Pd阳极催化剂电催化性能不稳定的原因[A];第30届全国化学与物理电源学术年会论文集[C];2013年

8 郑燕贞;王翠芳;郭永榔;;直接乙醇燃料电池PtSn/C阳极催化剂的制备和表征[A];第二十七届全国化学与物理电源学术年会论文集[C];2006年

9 陈煜;唐亚文;刘长鹏;邢巍;陆天虹;;碳载高合金化Pt-Ru催化剂的制备及性能[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年

10 毛示e,

本文编号:1908473


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1908473.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户bb9bb***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com