当前位置:主页 > 科技论文 > 电力论文 >

轴向磁密电机振动特性研究

发布时间:2018-05-19 17:35

  本文选题:轴向磁密电机 + 不平衡磁拉力 ; 参考:《天津大学》2014年硕士论文


【摘要】:随着稀土永磁材料和制造工艺的发展,轴向磁密电机性能得到了极大的提高。与传统的径向磁密电机相比,其具有结构简单、轴向长度短、运行可靠、散热好和功重比大等显著优点,广泛应用于大功率、高功率密度以及有特殊安装要求的场合。但是,电机通常为含脉动激励的对称系统,因此必然产生和径向磁密电机相同的振动和噪声问题,进而影响电机的性能和使用寿命。本文以轴向磁密电机为例,研究了拓扑结构对振动特性的影响,主要内容如下:针对轴向磁密电机的槽频激励,采用叠加方法定性地研究了槽极配合与不平衡磁拉力和脉动转矩之间的激起和抑制关系,提出了相应的振动抑制方法。在此基础上,还揭示了与槽极配合密切相关的三种典型受力模式:轴向平移扭转模式、径向平移扭摆模式和平衡模式。上述研究对振动预测具有指导意义。为了验证解析结论的正确性,本文采用麦克斯韦张量法计算了该类电机的径向、切向和轴向磁拉力。将力沿坐标方向投影,得到了不平衡磁拉力和脉动转矩。三维静态电磁场有限元分析结果证明了理论推导的正确性。最后进行了定子横向受迫振动研究。本文采用哈密顿原理建立了盘型结构的动力学模型。该模型计入了由电机气隙旋转磁场产生的磁拉力对刚度摄动的影响,揭示了电机基本参数,如气隙长度、极对数、极弧系数等与电机定子响应之间的映射关系。本文工作为国家自然科学基金《基于相位调谐的永磁电机减振降噪机理研究》(编号:50705062)的一部分,同时也为国家自然科学基金《旋转超声动力拓扑选型研究》(编号:51175370)工作的一部分。论文工作为轴向磁密电机的减振降噪提供了一定的理论依据。
[Abstract]:With the development of rare earth permanent magnet materials and manufacturing technology, the performance of axial magnetic density motor has been greatly improved. Compared with the traditional radial magnetic density motor, it has the advantages of simple structure, short axial length, reliable operation, good heat dissipation and high power / weight ratio. It is widely used in high power, high power density and special installation situations. However, the motor is usually a symmetric system with pulsating excitation, so it will inevitably produce the same vibration and noise problems as the radial magnetic density motor, which will affect the performance and service life of the motor. In this paper, the influence of topology on the vibration characteristics of axial magnetic dense motor is studied. The main contents are as follows: aiming at the slot frequency excitation of axial magnetic density motor, The superposition method is used to qualitatively study the excitation and suppression relationship between slot matching and unbalanced magnetic pull force and pulsating torque, and a corresponding vibration suppression method is proposed. On this basis, three typical stress modes closely related to the coordination of grooves are revealed: axial translational torsion mode, radial translational torsional pendulum mode and balance mode. The above research is of guiding significance for vibration prediction. In order to verify the correctness of the analytical conclusions, the radial, tangential and axial magnetic pull forces of this kind of motors are calculated by Maxwell Zhang Liang method. The unbalanced magnetic pull force and pulsating torque are obtained by projecting the force along the coordinate direction. The results of finite element analysis of three-dimensional static electromagnetic field prove the correctness of the theoretical derivation. Finally, the transverse forced vibration of the stator is studied. In this paper, the dynamic model of disk structure is established by using Hamiltonian principle. The model takes into account the effect of the magnetic pull force generated by the rotating magnetic field of the air gap on the stiffness perturbation, and reveals the mapping relationship between the basic parameters of the motor, such as air gap length, polar logarithm, polar arc coefficient, and the stator response of the motor. This paper is a part of the National Natural Science Foundation of China, "study on the Mechanism of Vibration and noise reduction of permanent Magnet Motor based on Phase tuning" (No.: 50705062). It is also a part of the work of National Natural Science Foundation of China "Research on Topology selection of rotational Ultrasonic Dynamics" (No. 51175370). The work of this paper provides a theoretical basis for reducing vibration and noise of axial magnetic density motor.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM351

【参考文献】

相关期刊论文 前4条

1 王巍;宋志环;陈健;于慎波;唐任远;;AFIR盘式永磁电机定子系统固有频率及电磁噪声计算[J];电机与控制学报;2009年06期

2 刘晓东,赵衡兵,陈永校,杨芳春;钕铁硼永磁盘式同步电动机的设计研究[J];微特电机;1998年03期

3 吴惠燕,程明,周鹗;单相盘式异步电机设计计算[J];微特电机;1996年01期

4 蒋豪贤,梁峰;圆盘式轴向磁场异步电动机[J];中国电机工程学报;1988年02期



本文编号:1911024

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1911024.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户02066***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com