磁光玻璃电流互感器与磁流体全光纤电流传感方式的研究
发布时间:2018-05-23 22:15
本文选题:光学电流互感器 + 全光纤电流传感 ; 参考:《天津大学》2014年硕士论文
【摘要】:目前对于光学电流互感器(OCS)的研究正处于一个瓶颈阶段,自身的双折射和温度影响因素一直难以得到解决。也是导致光学电流互感器难以在实用中推广的重要原因。很多高校和研究所均在进一步进行相关的实验和理论研究,但拥有真正实用价值的突破却鲜有报道。而光学电流互感器相比于传统电子互感器存在着诸多优点,这使其未来在电力部门的应用前景十分广阔,也被人们所看好。针对此种情况,本课题组决定也参与到光学互感器的研制过程中来,希望能有所创新和突破。本文主要工作内容包含以下三个部分:(1)本文主要研究了是棒状磁光玻璃型光学电流互感器(MOCS)。完成了实验系统的搭建,和针对磁光玻璃型传感头进行的一些应用前期实验验证。实验系统的搭建包括硬件系统的建立和基于labview的信号处理软件编写。构建一套完善的大电流仿真系统。进行了传感器的重复性、测量范围、灵敏度和光源功率影响情况的基本性能实验。给出了传感器相关基本参数。并进行传感器与外界环境温度变化关系的实验探究,给出了传感器输出与磁场变化、温度变化三者之间的明确变化数学模型。提出温度补偿的解决方法。(2)本文不仅仅研究了磁光玻璃型光学电流互感器的信号处理,而且还对全光纤电流测量方法进行了创新性的研究。利用新型材料磁流体(MF)与单模-多模-单模光纤结构(SMS)相结合,制作了基于磁流体和单模-多模-单模结构的新型全光纤电流传感器(AFOCS)。该电流传感方式是完全利用输出功率衰减进行测量,不仅简化了信号处理方法,更重要的是在光学电流传感领域提出了新的研究方向。研究初期采用的是直通型的传感器,寻找到合适的传感波长,然后利用窄带激光器搭建了一套完整的电流检测系统。后期又对系统进行了改进,为了提高传感灵敏度,将直通型传感器改为反射型,为了提高系统稳定性,将原先的窄带激光改为高斯型的宽带光源,并从原理仿真上验证实验原理的正确性。还对传感器的安装角度问题进行了实验验证,证明当传感器的轴向与磁场方向垂直的时候,传感器测量灵敏度最大。(3)给出了两种电流传感方式的一个整体比较。包括检测原理不同所带来的信号处理方式的不同和影响其性能因素的不同;在将来实际应用中两种传感器的检测对象也有所差别,磁光玻璃型的电流互感器对交直流都可以检测,而磁流体型目前的研究只能认为其可以进行高压直流检测,交流还是受到限制。但我们相信随着团队的研究深入,交流也是可以突破的。
[Abstract]:At present, the research of optical current transformer (OCS) is at a bottleneck stage, its birefringence and temperature influence factors have been difficult to solve. It is also an important reason that the optical current transformer is difficult to be popularized in practice. Many universities and research institutes are carrying out further experimental and theoretical research, but the breakthrough with real practical value is rarely reported. Compared with the traditional electronic transformer, the optical current transformer has many advantages, which makes its future application in the power sector very broad, and is also favored by people. In view of this situation, our group decided to participate in the development of optical transformers, hoping to be innovative and breakthrough. The main work of this paper includes the following three parts: 1) in this paper, we mainly study the rod magneto-optic glass optical current transformer (MOCSN). The experimental system is built, and some preliminary experiments on magneto-optic glass sensor head are carried out. The construction of the experimental system includes the establishment of the hardware system and the programming of the signal processing software based on labview. Build a set of perfect high current simulation system. The basic performance experiments of the repeatability, measurement range, sensitivity and power of light source are carried out. The basic parameters of the sensor are given. The relationship between the sensor and the ambient temperature is studied experimentally, and the mathematical model of the change of the sensor output, the magnetic field and the temperature is given. In this paper, not only the signal processing of magneto-optic glass optical current transformer is studied, but also the all optical fiber current measurement method is studied innovatively. A novel all-fiber current sensor based on magnetofluid and single-mode-multimode single-mode current sensor (AFOCSS) has been fabricated by combining a new type of MHD with a single-mode multimode single-mode optical fiber structure (SMSs) and a novel all-fiber current sensor based on magnetofluid and single-mode multi-mode single-mode structure. It not only simplifies the signal processing method, but also puts forward a new research direction in the field of optical current sensing. At the beginning of the study, a straight through sensor is used to find the appropriate wavelength, and then a complete current detection system is built by using a narrow band laser. In the later period, the system was improved. In order to improve the sensitivity of the sensor, the straight-through type sensor was changed to the reflective type. In order to improve the stability of the system, the narrow band laser was changed to the Gao Si type broadband light source. The correctness of the experimental principle is verified by the simulation of the principle. The experimental results show that when the sensor is perpendicular to the direction of the magnetic field, the sensitivity of the sensor is maximum. 3) an overall comparison of the two current sensing methods is given. Including different signal processing methods brought by different detection principles and different factors affecting their performance; the detection objects of the two kinds of sensors will also be different in practical applications in the future. The current transformer of magneto-optic glass can detect both AC and DC, but the current research of MHD can only consider that it can be detected by HVDC, but the AC is still limited. But we believe that with the team's in-depth research, communication is also possible to break through.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP212;TM45
【参考文献】
相关期刊论文 前10条
1 徐贲;李建庆;;自映像多模干涉仪的应力传感研究[J];光电子.激光;2012年09期
2 王景飞;梁京伟;董前民;;反射式Sagnac干涉光纤电流互感器的传感头误差研究[J];激光与光电子学进展;2011年10期
3 谭锁奎;郭红燕;吴敏;纪松;;磁流体的稳定性研究[J];兵器材料科学与工程;2009年05期
4 闫宪峰;;500kV电流互感器现场检测中抗电磁干扰的有效方法[J];科技情报开发与经济;2008年27期
5 张健;及洪泉;远振海;李岩松;郭志忠;;光学电流互感器及其应用评述[J];高电压技术;2007年05期
6 刘海峰;阎春雨;陈志勇;刘伟;吴宏亮;;油浸式电流互感器缺陷分析与状态诊断[J];河北电力技术;2006年04期
7 郭志忠;电子式电流互感器研究评述[J];继电器;2005年14期
8 李红斌,刘延冰;基于比较测量法的光学电流互感器[J];光子学报;2004年06期
9 艾延宝,金永君;法拉第磁致旋光效应及应用[J];物理与工程;2002年05期
10 王政平,孙晶华,李庆波;用于计量的光学电流互感器信号处理方案的分析与比较[J];变压器;2001年07期
相关硕士学位论文 前1条
1 李竞攀;光学电流互感器温度补偿新方法[D];华北电力大学;2012年
,本文编号:1926585
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1926585.html
教材专著