城市配电网网架优化研究
发布时间:2018-05-31 06:01
本文选题:配电网网架优化 + 蚁群算法 ; 参考:《华北电力大学》2014年硕士论文
【摘要】:配电网网架优化是配电网规划中的重要组成部分,是保证电网稳定运行、电网安全可靠性的重要前提。因此对配电网网架进行科学合理的优化对配电网规划工作具有重要的指导意义。 本文首先对配电网网架优化问题进行详细描述,并选取基于费用最小的模型作为优化问题的目标函数;其次,对蚁群优化算法与遗传优化算法分别做出改进,并分别应用于配电网网架优化工作中去验证算法的可行性和有效性;最后,将两种改进的算法相互结合,并提出基于融合算法的配电网网架优化模型,将其应用于配电网网架优化问题中去,验证算法的有效性,为呼和浩特地区的配电网网架优化工作进行科学的规划与指导,为国内类似配电网网架优化项目提供合理的参考依据。本文的主要研究内容与成果如下: (1)对城市配电网网架优化问题进行深入研究,针对配电网规划特点,从投资费用、折旧维护费用和线路损耗费用三个方面建立配电网网架优化的目标函数,并设置相应的约束条件。 (2)对蚁群算法进行简单描述,根据其特点对蚁群算法做出改进。在转移概率的改进中,本文实现了参数、与最大迭代次数N max的联动性;在信息素挥发因子的改进中,提出一种基于自适应的挥发因子;进而明确改进蚁群算法的配电网网架优化步骤后,将其应用于呼和浩特地区的配电网网架优化中,验证该方法的可行性和有效性。 (3)在对遗传算法的改进中,首先对基本遗传算法作基本介绍;其次,根据遗传算法的特点,从编码方式、交叉概率、变异概率三个方面进行改进说明;最后将改进后的遗传算法应用于呼和浩特地区的配电网网架优化中去,验证方法的有效性和可行性,并说明该方法对配电网网架优化工作的指导意义和实际应用价值。 (4)单个算法由于其本身缺陷所致,在解决配电网网架优化问题时容易出现一系列问题,,如遗传算法出现冗余迭代,蚁群算法初始解匮乏等;为能够得到更加精确地网架优化解,本文将改进后的蚁群算法和改进后的遗传算法相互融合,让二者优势互补,避免各自缺陷。最后,将该方法应用于呼市地区配电网网架优化问题中去,验证该方法在配电网网架优化中的优越性和实用性。 (5)将融合算法、改进蚁群算法和改进遗传算法分别在配电网网架优化应用中的结果进行对比;结论表明:融合算法与单个算法的优化性能相比,融合算法的优化效果更好,优化精度更高;该方法为今后城市配电网网架优化工作提供新的思路。
[Abstract]:The optimization of distribution network frame is an important part of distribution network planning. It is an important prerequisite for ensuring the stable operation of the power grid and the safety and reliability of the power grid. Therefore, the scientific and rational optimization of the distribution network frame has an important guiding significance for the distribution network planning.
In this paper, the optimization problem of the distribution network is described in detail, and the model based on the minimum cost is selected as the objective function of the optimization problem. Secondly, the improvement of the ant colony optimization algorithm and the genetic optimization algorithm is made respectively, and the feasibility and effectiveness of the algorithm are verified respectively in the distribution network grid optimization work. Finally, the feasibility and effectiveness of the algorithm are verified. The two improved algorithms are combined, and the optimization model of distribution network grid based on the fusion algorithm is put forward. It is applied to the optimization problem of distribution network frame to verify the effectiveness of the algorithm. It provides scientific planning and guidance for the optimization work of distribution network frame in Hohhot area, and provides the network frame optimization project similar to the distribution network in China. The main contents and achievements of this paper are as follows:
(1) in-depth study on the optimization of urban distribution network frame. Aiming at the characteristics of distribution network planning, the objective function of the optimization of distribution network frame is set up from three aspects of investment cost, depreciation maintenance cost and line loss cost, and the corresponding constraints are set up.
(2) a simple description of the ant colony algorithm is made to improve the ant colony algorithm based on its characteristics. In the improvement of the transfer probability, the linkage of the parameters and the maximum iteration number of N Max is realized. In the improvement of the pheromone volatilization factor, a self-adaptive volatile factor is proposed, and then the distribution network network of the ant colony algorithm is improved. After optimization steps, it is applied to the optimization of distribution network in Hohhot area to verify the feasibility and effectiveness of the method.
(3) in the improvement of genetic algorithm, the basic genetic algorithm is introduced first; secondly, according to the characteristics of the genetic algorithm, it is improved from the encoding mode, cross probability and mutation probability in three aspects. Finally, the improved genetic algorithm is applied to the distribution network optimization of distribution network in Hohhot area. The effectiveness and feasibility of the method are illustrated, and the guiding significance and practical application value of the method to the optimization of distribution network frame are explained.
(4) a single algorithm, due to its own defects, is prone to a series of problems in solving the problem of grid grid optimization in distribution network, such as the redundant iteration of the genetic algorithm, the shortage of the initial solution of ant colony algorithm, and so on. In order to get more accurate solution of the network frame, the improved ant colony algorithm and the improved genetic algorithm are fused together. The advantages of the two are complementary to avoid each defect. Finally, this method is applied to the optimization problem of the distribution network frame in huhhhun area, and the superiority and practicability of the method in the distribution network grid optimization are verified.
(5) the results of the fusion algorithm, the improved ant colony algorithm and the improved genetic algorithm in the distribution network truss optimization application are compared. The conclusion shows that the fusion algorithm is better than the optimization performance of the single algorithm, and the optimization effect is better and the optimization precision is higher. This method provides the optimization work of the urban distribution network frame in the future. A new idea.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM727.2;TP18
【参考文献】
相关期刊论文 前10条
1 曹蕴;李科阳;姚煜;;基于改进混沌遗传算法的配电网架优化[J];电力科学与工程;2009年05期
2 王春丽;赵书强;李勇;;基于改进量子遗传算法的输电网规划方法[J];电力科学与工程;2010年11期
3 张永伍,余贻鑫,严雪飞,罗凤章;基于区间算法和范例学习的配电网网架规划[J];电力系统自动化;2005年17期
4 章文俊;程浩忠;程正敏;姚茵;谷庆利;;配电网优化规划研究综述[J];电力系统及其自动化学报;2008年05期
5 李可;马孝义;甘学涛;符少华;;配电网架结构和馈线截面同步优化模型与算法[J];电力系统及其自动化学报;2010年01期
6 方兴,郭志忠;配电网规划研究述评[J];电力自动化设备;2003年05期
7 周愈鹏;覃拓;危秋珍;蓝慧;;基于免疫优势算法的配电网规划[J];电气开关;2011年02期
8 袁晓辉,王乘,张勇传,袁艳斌;粒子群优化算法在电力系统中的应用[J];电网技术;2004年19期
9 符杨;徐自力;曹家麟;;混合粒子群优化算法在电网规划中的应用[J];电网技术;2008年15期
10 符杨;孟令合;胡荣;曹家麟;;改进多目标蚁群算法在电网规划中的应用[J];电网技术;2009年18期
本文编号:1958566
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1958566.html