当前位置:主页 > 科技论文 > 电力论文 >

基于电池组温度状态的纯电动汽车能量管理策略研究

发布时间:2018-05-31 11:15

  本文选题:纯电动汽车 + 锂离子电池 ; 参考:《重庆大学》2014年硕士论文


【摘要】:随着全球能源危机与环境问题日益加剧,传统汽车工业正面临着前所未有的严峻的挑战,低能耗、更环保的新能源汽车成为汽车工业发展的趋势。纯电动汽车作为一种新型的节能环保汽车,与传统燃油汽车相比具有低能耗、结构简单、振动及噪声低、无污染物排放等优点,是未来汽车发展的一个重要方向。动力电池作为驱动纯电动汽车唯一的能量源,,对整车的性能表现有直接影响。锂离子动力电池以其工作电压高、比能量和比功率大、自放电率低、循环使用寿命长、无记忆效应、无环境污染等一系列的优点,成为电动汽车动力电池的首选。 纯电动汽车在运行过程中,其动力电池组不断充放电而产生大量的热,这些热量若未及时散失将导致电池组温度上升,当电池组频繁大电流放电时电池组温升尤为明显。过高的温度将影响锂离子电池组使用性能,降低使用效率和循环寿命,甚至有可能导致电池永久性失效。因此,电池组充放电时的温度必须予以控制。 本文针对纯电动汽车用锂离子动力电池组大电流放电时生热量过大而导致温升难以控制的问题,制定了基于电池组过温的输出功率控制策略:电池组温度过高时,通过适当地控制其输出功率,以达到降低电池组生热量从而限制电池组温升的目的。 本文所做的主要工作如下: ①从纯电动汽车整车动力性与经济性要求出发,结合整车基本参数,对纯电动汽车动力系统关键参数进行匹配。 ②对锂离子动力电池的结构、工作原理、特性参数及生热特性进行了研究与分析,建立了锂离子电池生热速率计算模型。在此基础上,基于汽车仿真软件ADVISOR建立了纯电动汽车锂离子动力电池组仿真模型。 ③针对纯电动汽车用锂离子动力电池组在频繁大电流输出工况下温升难以控制的问题,制定了基于电池组过温的限功率模糊控制策略。同时,为验证控制策略的有效性,进行了多工况下纯电动汽车性能仿真与分析。
[Abstract]:With the increasing global energy crisis and environmental problems, the traditional automobile industry is facing unprecedented severe challenges, low energy consumption, more environmentally friendly new energy vehicles become the trend of automotive industry development. As a new type of energy saving and environmental protection vehicle, pure electric vehicle (EV) has the advantages of low energy consumption, simple structure, low vibration and noise, no pollutant emission and so on, which is an important direction of future automobile development. As the only energy source for driving pure electric vehicles, power battery has a direct impact on the performance of the whole vehicle. Li-ion power battery has become the first choice of electric vehicle battery because of its high working voltage, high specific energy and specific power, low self-discharge rate, long cycle life, no memory effect, no environmental pollution and so on. During the operation of pure electric vehicle (EV), a large amount of heat is produced by charging and discharging the power battery, which will cause the temperature of the battery to rise if it is not lost in time, especially when the battery is discharging frequently with high current. If the temperature is too high, it will affect the performance of lithium ion battery, reduce the efficiency and cycle life, and even lead to the permanent failure of the battery. Therefore, the battery charge and discharge temperature must be controlled. In this paper, the output power control strategy based on excessive temperature of lithium ion battery pack for pure electric vehicle, which is caused by excessive heat generation during large current discharge and difficult to control the temperature rise, is developed: when the battery pack temperature is too high, the output power control strategy is proposed in this paper. By properly controlling the output power, the heat generation of the battery pack is reduced and the temperature rise of the battery pack is limited. The main work of this paper is as follows: According to the requirements of power and economy of pure electric vehicle and the basic parameters of the whole vehicle, the key parameters of the power system of pure electric vehicle are matched. (2) the structure, working principle, characteristic parameters and heat generation characteristics of Li-ion battery are studied and analyzed, and the calculation model of heat generation rate of Li-ion battery is established. On this basis, the simulation model of lithium ion battery pack of pure electric vehicle is established based on the vehicle simulation software ADVISOR. In order to solve the problem that the temperature rise of Li-ion power battery for pure electric vehicle is difficult to control under the condition of frequent and high current output, a power limiting fuzzy control strategy based on overtemperature of battery pack is developed. At the same time, in order to verify the effectiveness of the control strategy, the performance simulation and analysis of pure electric vehicle under multiple working conditions are carried out.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM912;U469.72

【参考文献】

相关期刊论文 前10条

1 王宇宁 ,姚磊 ,王艳丽;国外电动汽车的发展战略[J];汽车工业研究;2005年09期

2 孟良荣;王金良;;电动车电池现状与发展趋势[J];电池工业;2006年03期

3 侯明;衣宝廉;;燃料电池技术发展现状与展望[J];电化学;2012年01期

4 雷惊雷,张占军,吴立人,潘国宏,黄少卿,杨迈之,蔡生民;电动车,电动车用电源及其发展战略[J];电源技术;2001年01期

5 李腾;林成涛;陈全世;;锂离子电池热模型研究进展[J];电源技术;2009年10期

6 王峰;李茂德;;电池热效应分析[J];电源技术;2010年03期

7 肖蕙蕙;王志强;李山;余雷;;电动汽车动力锂离子电池建模与仿真研究[J];电源学报;2012年01期

8 李伟;胡勇;;动力铅酸电池的发展现状及其使用寿命的研究进展[J];中国制造业信息化;2011年07期

9 孙逢春;德国和法国电动汽车的现状和发展[J];科技潮;2004年08期

10 张平;胡安荣;;我国电动汽车产业发展路线图研究[J];现代经济探讨;2012年10期

相关博士学位论文 前1条

1 周飞鲲;纯电动汽车动力系统参数匹配及整车控制策略研究[D];吉林大学;2013年



本文编号:1959430

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1959430.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cb3c8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com