面向微电网分布式实时仿真关键技术研究
发布时间:2018-06-04 03:41
本文选题:分布式实时仿真 + 微电网 ; 参考:《北京理工大学》2015年硕士论文
【摘要】:实时仿真是电力系统试验研究、规划设计、评估分析的重要工具。随着电力电子技术的发展,面向微电网等新型电力系统的实时仿真呈现出刚性求解、非线性、高速计算的特点,这就对实时仿真平台的开发带来了困难与挑战。基于PC的实时仿真机在仿真求解速度上难以令人满意,基于FPGA、DSP的实时仿真器建模困难、开发周期长,因此基于多样化处理器协作的分布式实时仿真成为电力系统仿真平台发展的潮流。本文基于FPGA实时仿真板卡与运行QNX实时操作系统的PC实时仿真机,研究了面向微电网换流器应用的实时多速率协同仿真平台的设计实现,兼顾仿真速度、精度与建模灵活性。本文的主要工作如下: 1.研究了解决微电网刚性仿真问题的实时多速率仿真方法。本文基于状态空间建模手段,采用时域分割方法,将微电网仿真模型分割为快速变化的电路子系统与慢速变化的控制子系统,利用实时多速率求解方法进行实时仿真。 2.完成了基于FPGA、PC的实时多速率协同仿真平台的设计实现。本文提出了多速率仿真平台的架构和仿真流程,在此基础上搭建了QNX实时仿真引擎,设计实现了FPGA实时多速率仿真接口控制模块,包括高精度时钟同步、高速仿真数据交互模块。QNX仿真机时钟抖动控制在0.8s以内,,仿真数据交互每10s完成一次。 3.研究了FPGA高速仿真求解器的改进与实现,包括线性状态空间求解器和换流器非线性求解器。设计实现了基于浮点数的离散状态空间方程组求解器和换流器非线性求解器。仿真步长能够达到200~500ns,求解器支持模型参数重配置。 4.开展了三相两电平逆变算例的实时仿真试验研究。以离线精确模型为基准,将实时多速率仿真平台与传统PC实时仿真机从仿真波形、仿真结果欧式误差方面进行比较评估。本文设计实现的FPGA、PC实时分布式仿真平台能够承担微电网换流器系统仿真任务,电磁暂态模拟精确,电路仿真步长达到0.2~0.5s,仿真精度达到欧式误差1%左右。而PC实时仿真机不能满足高频换流器的仿真需求。
[Abstract]:Real-time simulation is an important tool for power system experimental research, planning and design, evaluation and analysis. With the development of power electronics technology, real-time simulation of new power systems such as micro-grid presents the characteristics of rigid solution, nonlinear and high-speed computing, which brings difficulties and challenges to the development of real-time simulation platform. The real-time simulation machine based on PC is difficult to solve the problem satisfactorily, and the real-time simulator based on FPGA DSP is difficult to model and has a long development period. Therefore, distributed real-time simulation based on the cooperation of multiple processors has become the trend of power system simulation platform. Based on FPGA real-time simulation board and PC real-time simulation computer running QNX real-time operating system, this paper studies the design and realization of real-time multi-rate collaborative simulation platform for the application of microgrid converter, which takes into account the simulation speed, precision and modeling flexibility. The main work of this paper is as follows: 1. The real-time multi-rate simulation method to solve the rigid simulation problem of micro-grid is studied. Based on the method of state space modeling, the simulation model of microgrid is divided into a fast changing circuit subsystem and a slow changing control subsystem, and the real-time multi-rate solution method is used for real-time simulation. 2. The design and implementation of real-time multi-rate collaborative simulation platform based on FPGA PC is completed. In this paper, the architecture and simulation flow of the multi-rate simulation platform are presented. On this basis, the QNX real-time simulation engine is built, and the FPGA real-time multi-rate simulation interface control module is designed and implemented, including high-precision clock synchronization. The clock jitter of QNX simulator is controlled within 0.8 s, and the simulation data interaction is completed every 10 s. 3. The improvement and implementation of FPGA high-speed simulation solver including linear state space solver and converter nonlinear solver are studied. The discrete state space equations solver and converter nonlinear solver based on floating point number are designed and implemented. The simulation step can reach 200ns and the solver supports the reconfiguration of model parameters. 4. The real-time simulation of three-phase two-level inverter is carried out. Based on the off-line accurate model, the real-time multi-rate simulation platform and the traditional PC real-time simulation machine are compared and evaluated from the aspects of simulation waveform and Euclidean error. The FPGA PC real-time distributed simulation platform designed in this paper can undertake the task of microgrid converter system simulation, the electromagnetic transient simulation is accurate, the circuit simulation step size reaches 0.2 ~ 0.5s, and the simulation accuracy reaches about 1% of the Euclidean error. PC real-time simulation machine can not meet the needs of high-frequency converter simulation.
【学位授予单位】:北京理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM743
【参考文献】
相关期刊论文 前10条
1 王占领;郑三立;;电力系统实时仿真技术分析[J];电力设备;2006年02期
2 鲁宗相;王彩霞;闵勇;周双喜;吕金祥;王云波;;微电网研究综述[J];电力系统自动化;2007年19期
3 王成山;李鹏;王立伟;;电力系统电磁暂态仿真算法研究进展[J];电力系统自动化;2009年07期
4 张树卿;童陆园;薛巍;洪潮;;基于数字计算机和RTDS的实时混合仿真[J];电力系统自动化;2009年18期
5 郑超,周孝信,李若梅;电压源换流器式高压直流输电的动态建模与暂态仿真[J];电网技术;2005年16期
6 徐政;陈海荣;;电压源换流器型直流输电技术综述[J];高电压技术;2007年01期
7 周林;贾芳成;郭珂;冯玉;;采用RT-LAB的光伏发电仿真系统试验分析[J];高电压技术;2010年11期
8 曾正;杨欢;赵荣祥;汤浩;金磊;朱明磊;汤胜清;;多功能并网逆变器研究综述[J];电力自动化设备;2012年08期
9 罗建民;戚光宇;何正文;象阳;;电力系统实时仿真技术研究综述[J];继电器;2006年18期
10 周林;黄勇;郭珂;冯玉;;微电网储能技术研究综述[J];电力系统保护与控制;2011年07期
本文编号:1975733
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1975733.html