磁通门磁力仪的设计与研究
发布时间:2018-06-04 08:56
本文选题:磁通门 + 磁力仪 ; 参考:《吉林大学》2014年硕士论文
【摘要】:磁通门磁力仪又称为磁饱和式磁敏传感器,它是选取导磁率高的软磁性材料(最常见的有坡莫合金、钴基非晶合金等)作磁芯材料,根据法拉第电磁感应定律设计的磁测量装置。磁通门作为磁测量传感器的一种,在很多科学技术研究领域中都会用到。由于磁通门传感器能够适用于高速运动的测试环境,尤其在弱磁场的测量方面具有优势,被广泛用于物理学、金属冶炼、医疗军事、地球物理勘测、导航测姿、工业自动化等领域。地磁常规和地动预兆检测的最合适的技术是弱磁场检测技术,因此磁场的检测成为当今热门研究领域。 本文在研究了大量磁通门磁力仪有关文献的基础上,介绍了磁通门磁力仪的分类和其国内外的发展现状和发展趋势,阐明了磁通门传感器的工作原理,确立双磁芯的基本结构,选择了具有良好磁特性的软磁材料坡莫合金做为磁力仪的磁芯材料,并依据其结构参数对其感应信号造成的影响,设计、制作了磁通门磁力仪。在磁通门磁力仪的信号处理电路上,选择了二次谐波电路做为磁通门磁力仪的感应信号的检测电路,以石英晶体(2.4576M)作为频率源,通过分频和功率放大处理后为磁通门磁力仪提供驱动信号。同时利用同一频率源分频得到传感器信号处理电路中相敏检波电路的基准信号。对于磁通门传感器的输出信号,设计的LC谐振、前置放大电路、带通滤波电路、相敏检波电路、低通滤波电路以及积分电路,使得磁通门磁力仪能够正常工作,输出端输出的信号与被测磁场强度成正比例,并将被测磁场强度以LCD的形式显示出来。此外,对磁通门传感器噪声形成的原因做了研究和分析。分析的结果表明:传感器探头的所有电磁特性以及形状尺寸参数的不对称都将导致噪声的产生。通过对噪声频谱的分析,得到噪声信号主要为感应信号的基波分量和三次谐波分量,本文同时给出了一些抑制噪声的建议。 实验结果表明,磁通门磁力仪的线性度好,,系统的误差小,精度高,达到了设计使用要求。
[Abstract]:The fluxgate magnetometer, also known as the magnetic saturation type magnetic sensor, selects soft magnetic materials with high magnetic conductivity (most common permalloy, cobalt-based amorphous alloys, etc.) as core materials. Magnetic measurement device designed according to Faraday's law of electromagnetic induction. As a kind of magnetic sensor, fluxgate is used in many fields of science and technology. Fluxgate sensors are widely used in physics, metal smelting, medical military, geophysical survey, navigation and attitude determination because they can be used in high-speed moving environment, especially in the measurement of weak magnetic field, so they are widely used in physics, metal smelting, medical military, geophysical survey, navigation and attitude determination. Industrial automation, etc. The most suitable technique for geomagnetic routine and geomagnetic precursor detection is weak magnetic field detection, so magnetic field detection has become a hot research field. Based on the study of a large number of literatures on fluxgate magnetometers, this paper introduces the classification of fluxgate magnetometers, the present situation and development trend of fluxgate magnetometers at home and abroad, expounds the working principle of fluxgate sensors, and establishes the basic structure of dual magnetic cores. The soft magnetic material permalloy with good magnetic properties is selected as the core material of the magnetometer. According to the influence of its structure parameters on the inductive signal, the fluxgate magnetometer is designed and fabricated. In the signal processing circuit of the fluxgate magnetometer, the second harmonic circuit is selected as the detecting circuit of the inductive signal of the fluxgate magnetometer, and the quartz crystal (2.4576m) is used as the frequency source. The drive signal is provided for fluxgate magnetometer after frequency division and power amplification. At the same time, the reference signal of the phase sensitive detection circuit in the sensor signal processing circuit is obtained by using the same frequency source frequency division. For the output signal of fluxgate sensor, the designed LC resonance, preamplifier circuit, band-pass filter circuit, phase-sensitive detector circuit, low-pass filter circuit and integral circuit make the fluxgate magnetometer work normally. The output signal is proportional to the measured magnetic field intensity, and the measured magnetic field intensity is displayed in the form of LCD. In addition, the cause of noise formation of fluxgate sensor is studied and analyzed. The results show that all the electromagnetic characteristics of the sensor probe and the asymmetry of the shape and size parameters will lead to the noise generation. Through the analysis of the noise spectrum, it is found that the noise signal is mainly the fundamental component and the third harmonic component of the inductive signal. Some suggestions for noise suppression are also given in this paper. The experimental results show that the fluxgate magnetometer has good linearity, small system error and high precision.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP212.13;TM936
【参考文献】
相关期刊论文 前10条
1 董新平,冯q7,张承燕;一种新型磁通门磁强计[J];传感器技术;1999年06期
2 郭爱煌,傅君眉;磁通门技术及其应用[J];传感器技术;2000年04期
3 郭志友,孙慧卿;磁传感器的非线性误差修正技术[J];传感器技术;2004年05期
4 李大明,祝伯英;利用峰差法的一种新型磁通门磁强计[J];电测与仪表;1996年06期
5 丁鸿佳,隋厚堂;磁通门磁力仪和探头研制的最新进展[J];地球物理学进展;2004年04期
6 朱岗],徐文耀;MAGSAT地磁卫星及其应用[J];地球物理学报;1988年05期
7 刘士杰,卢军,马连元,汤静波,霍冠群;CTM—302型三分量高分辨率磁通门磁力仪的研制与应用[J];地球物理学报;1990年05期
8 杨振江,余进;多用途有源滤波器UAF42的应用[J];电子技术应用;1997年09期
9 王锋;刘仁浩;张有维;;三端式磁通门传感器的数学建模[J];中北大学学报(自然科学版);2008年02期
10 王正华;磁通门测磁传感器的特性分析[J];上海交通大学学报;1992年02期
本文编号:1976777
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/1976777.html