当前位置:主页 > 科技论文 > 电力论文 >

特高压直流及柔性直流输电系统换流站绝缘配合研究

发布时间:2018-06-11 15:39

  本文选题:特高压直流 + 柔性直流 ; 参考:《浙江大学》2014年硕士论文


【摘要】:特高压直流输电具有大容量、远距离和低损耗等优点,±1100kV特高压直流输电作为一个全新的输电电压等级,非常适合特大型能源基地向远方负荷中心输送电能。多端柔性直流输电与传统直流输电相比具有诸多优势,非常适用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电和异步交流电网互联等领域。特高压直流输电和柔性直流输电是当今直流输电领域的两大热点,代表着直流输电技术的最高水平。 直流换流站的绝缘配合研究是直流输电工程实施中的关键技术之一,缘水平的高低直接关系到整个直流工程造价。本文分别对±1100kV特高压直流和基于模块化多电平换流器(Modular Multilevel Converter, MMC)型的多端柔性直流输电系统的换流站绝缘配合进行了研究。 根据±800kV特高压直流换流站的绝缘配合经验,并考虑±1100kV特高压换流站绝缘配合的特殊性,提出了±1100kV特高压换流站的避雷器布置方案,通过计算确定了换流站交直流侧的避雷器参数,在此基础上通过仿真计算得到了换流站设备的过电压水平,并确定了±1100kV特高压换流站设备的绝缘裕度,最后采用惯用法确定了换流站关键设备的绝缘水平。 对于多端柔性直流输电系统,目前世界上暂无此类工程的绝缘配合经验。本文以舟山多端柔性直流输电工程为例,结合高压直流换流站的避雷器布置原则,确定了多端柔性直流换流站的避雷器布置,然后详细介绍了柔性直流换流站避雷器参数的选取原则、交直流侧避雷器的计算方法,并仿真计算了舟山多端柔性直流工程各端换流站关键设备的过电压水平,并确定了换流站关键设备的绝缘裕度,最后计算确定了多端柔性直流换流站交直流设备的绝缘水平。 最后,本文针对±1100kV特高压直流和多端柔性直流输电系统的特点,得到了换流站在分别采取其他避雷器布置方案下的设备绝缘水平,并比较了各种不同避雷器布置方案下绝缘配合的区别及优缺点,可为实际工程选取避雷器布置方案提供参考。
[Abstract]:UHV HVDC transmission has the advantages of large capacity, long distance and low loss. As a new voltage grade, 卤1100kV UHV HVDC transmission is very suitable for the ultra-large energy base to transmit electric energy to the remote load center. Compared with traditional DC transmission, multi-terminal flexible DC transmission has many advantages. It is very suitable for renewable energy grid, distributed generation, isolated island power supply, urban power supply and asynchronous AC network interconnection and so on. UHV DC transmission and flexible DC transmission are two hot spots in the field of HVDC transmission, representing the highest level of HVDC technology. The research on insulation coordination of HVDC converter station is one of the key technologies in the implementation of HVDC project. The level of edge is directly related to the cost of the whole DC project. In this paper, the insulation coordination of 卤1100kV UHV DC and MMC-based multiterminal flexible DC transmission system based on modularized multilevel converter is studied. Based on the experience of 卤800kV UHV DC converter station insulation coordination, Considering the particularity of insulation coordination of 卤1100kV UHV converter station, the lightning arrester layout scheme of 卤1100kV UHV converter station is put forward, and the lightning arrester parameters of AC / DC side of converter station are determined by calculation. On this basis, the over-voltage level of converter station equipment is obtained by simulation, and the insulation margin of 卤1100kV UHV converter station equipment is determined. Finally, the insulation level of the key equipment in converter station is determined by using the customary method. There is no insulation cooperation experience for the multi-terminal flexible direct current transmission system in the world at present. Taking the multi-terminal flexible DC transmission project in Zhoushan as an example, combined with the principle of lightning arrester arrangement of HVDC converter station, the lightning arrester arrangement of multi-terminal flexible DC converter station is determined. Then the selection principle of the lightning arrester parameters of the flexible DC converter station and the calculation method of the AC / DC side lightning arrester are introduced in detail, and the overvoltage level of the key equipment of each terminal converter station in the multi-terminal flexible DC project in Zhoushan is simulated and calculated. The insulation margin of key equipment in converter station is determined, and the insulation level of AC / DC equipment in multi-terminal flexible DC converter station is calculated. Finally, the characteristics of 卤1100kV UHV DC and multi-terminal flexible DC transmission system are discussed in this paper. The insulation level of the converter station under other arrester arrangement schemes is obtained, and the differences, advantages and disadvantages of insulation coordination under different lightning arrester layout schemes are compared, which can be used as a reference for practical engineering selection of arrester layout scheme.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM721.1

【参考文献】

相关期刊论文 前10条

1 陈霞;林卫星;孙海顺;文劲宇;李乃湖;姚良忠;;基于多端直流输电的风电并网技术[J];电工技术学报;2011年07期

2 刘钟淇;宋强;刘文华;;采用MMC变流器的VSC-HVDC系统故障态研究[J];电力电子技术;2010年09期

3 袁清云;;我国特高压直流输电发展规划与研究成果[J];电力设备;2007年03期

4 王玉平;张一鸣;;特高压直流避雷器的技术特点与分析[J];电力设备;2007年03期

5 阮思烨;李国杰;孙元章;;多端电压源型直流输电系统的控制策略[J];电力系统自动化;2009年12期

6 管敏渊;徐政;屠卿瑞;潘伟勇;;模块化多电平换流器型直流输电的调制策略[J];电力系统自动化;2010年02期

7 刘钟淇;宋强;刘文华;;基于模块化多电平变流器的轻型直流输电系统[J];电力系统自动化;2010年02期

8 屠卿瑞;徐政;管敏渊;郑翔;张静;;模块化多电平换流器环流抑制控制器设计[J];电力系统自动化;2010年18期

9 管敏渊;徐政;;模块化多电平换流器型直流输电的建模与控制[J];电力系统自动化;2010年19期

10 李强;贺之渊;汤广福;司德亮;郑斌毅;殷志良;;新型模块化多电平换流器空间矢量脉宽调制方法[J];电力系统自动化;2010年22期



本文编号:2005801

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2005801.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9298c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com