当前位置:主页 > 科技论文 > 电力论文 >

薄壁板气动弹性非线性振动的压电俘能研究

发布时间:2018-06-16 08:43

  本文选题:气动弹性 + 多物理场耦合 ; 参考:《哈尔滨工业大学》2015年硕士论文


【摘要】:自然界中的流致振动无处不在,如何将无处不在的流致振动转化为电能已经成为当前的研究热点。高速列车和飞行器飞行时,在气动力作用下,列车和飞行器的壁板将产生气动弹性振动;通常,该气动弹性问题是有害的,应尽量避免,而压电片将振动的机械能转化为电能的同时会对壁板的振动产生抑制的作用,提高高速列车和飞行器的稳定性。多个压电俘能器联合使用,可为微电子系统持续供电且增加列车和飞行器稳定性。因此,本文在阅读大量壁板振动和压电俘能文献后,针对壁板的气动弹性非线性振动俘能进行一系列的理论计算、仿真和实验研究。本文基于气动弹性理论、振动理论、弹性力学、材料力学、压电学和欧拉伯努利梁理论等相关知识,建立了悬臂壁板压电俘能结构的线性数学模型和带有非线性刚度、非线性惯性及非线性压电项的悬臂壁板压电俘能结构的非线性数学模型。基于前面所建立的非线性理论数学模型,进行数值计算,分析了不同风速、外接负载电阻、压电片长度、压电片厚度对悬臂壁板的气动弹性振动和俘能特性的影响。另外,基于多物理场耦合的有限元仿真方法,分析了不同流速、外接负载电阻对曲面壁板振动和俘能的影响规律;并对压电贴片位置和尺寸进行优化分析和验证。最终通过对风速,负载电阻,压电贴片尺寸规格等因素分析发现,在一定的风速下,合理选择负载电阻和压电贴片尺寸规格可以使其最大程度的兼顾减振效果最好,输出功率最大和材料最大利用率。为了验证前面建立的数学模型和有限元仿真的正确性,设计和制作了直流压风式低速小型风洞,并编写一套数据采集程序构成一个实验系统,采用该实验系统对平板壁板和曲面壁板模进行实验。对壁板的临界颤振速度和俘能特性进行研究。实验结果表明:无论是使用理论方法还是仿真方法,都能与实验结果取得很好的一致性,验证了本文理论分析方法的和仿真方法的正确性。
[Abstract]:Fluid-induced vibration is ubiquitous in nature. How to transform the ubiquitous fluid-induced vibration into electric energy has become a hot research topic. Aeroelastic vibration will occur in the walls of trains and aircraft when they are flying under aerodynamic force; usually, the Aeroelastic problem is harmful and should be avoided as far as possible. While the piezoelectric plate converts the mechanical energy of vibration into electric energy, it can restrain the vibration of the wall plate and improve the stability of high-speed train and aircraft. Combined use of multiple piezoelectric energy capture devices can continuously supply power to microelectronic systems and increase the stability of trains and aircraft. Therefore, after reading a large number of literature on the vibration and piezoelectric energy capture of panels, a series of theoretical calculations, simulations and experiments have been carried out for the Aeroelastic nonlinear vibration energy capture of panels. Based on Aeroelastic theory, vibration theory, elastic mechanics, material mechanics, piezoelectric theory and Euler Bernoulli beam theory, a linear mathematical model of cantilever wall plate piezoelectric energy structure with nonlinear stiffness is established. Nonlinear mathematical model of cantilever wall plate piezoelectric energy capture structure with nonlinear inertia and nonlinear piezoelectric term. Based on the mathematical model of nonlinear theory, the effects of different wind speed, external load resistance, length of piezoelectric plate and thickness of piezoelectric plate on the Aeroelastic vibration and energy capture characteristics of cantilever panels are analyzed. In addition, based on the multi-physical field coupling finite element simulation method, the influence of different velocity and external load resistance on the vibration and energy capture of the curved wall plate is analyzed, and the location and size of the piezoelectric patch are optimized and verified. Finally, through the analysis of wind speed, load resistance, size specification of piezoelectric patch and other factors, it is found that under certain wind speed, reasonable selection of load resistance and size specification of piezoelectric patch can make the maximum degree of vibration absorption effect the best. Maximum output power and maximum material utilization. In order to verify the correctness of the mathematical model and finite element simulation, a low-speed wind tunnel is designed and fabricated, and a data acquisition program is written to form an experimental system. The experimental system is used to test the plate and curved panel die. The critical flutter velocity and energy capture characteristics of the panel are studied. The experimental results show that both the theoretical method and the simulation method are in good agreement with the experimental results, and the correctness of the theoretical analysis method and the simulation method is verified.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM619

【参考文献】

相关期刊论文 前1条

1 冉玉国;刘会;张金梅;韩景龙;;大展弦比机翼的非线性气弹响应分析[J];空气动力学学报;2009年04期



本文编号:2026087

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2026087.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d0e13***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com