含分布式能源的电网协调优化调度
本文选题:分布式能源 + 虚拟发电厂 ; 参考:《上海交通大学》2014年博士论文
【摘要】:在我国大力促进分布式能源发展和智能电网信息化、互动化建设的背景下,考虑分布式能源与我国当前电力调度模式的协调,解决分布式能源发电(用户)与电网之间的矛盾,使得分布式能源主动参与电网调度是值得研究的问题。主要研究内容和成果如下: 结合虚拟发电厂运行特点,提出一种带优先级的多目标优化方法,将虚拟发电厂的技术层和经济层两层管理理念具体化为带有优先级的目标函数,并采用基于满意度表示的两步分解方法求解。建立虚拟发电厂和配电网的联合优化控制模型并采用近似动态规划方法求解。在与配电网的联合优化时虚拟发电厂的快速控制功能可以改善配电网的运行指标,如电网的频率偏差、电压偏差、功率控制等。 基于充放储一体化电站的能量特性,研究了多个充放储电站入网的电网协调调度。利用电动汽车和电池的充放储过程的功率转移功能,改进SCOPF方法实现充放储节点功率调度的时间和空间解耦。首先采用虚拟发电厂的思想将区域电网中所有的分布式能源和充放储电站看作为一个整体,优化得到24个时段的调度结果,实现时间上的解耦;然后考虑电网拓扑结构,优化充放储功率实现空间解耦。 提出一种内点法结合随机调节因子更新的方法来求解基于机会约束规划的随机最优调度模型,采用半不变量和Cornish-Fisher级数结合的方法来计算机会约束的等效条件。引入与机会约束概率相关的调节因子,将随机最优调度问题转化为可采用内点法求解的最优潮流模型,并提出调节因子的迭代更新方法实现随机环境下的功率解最优。最后以IEEE14和IEEE118节点系统为例验证所提方法并分析了所提方法的精度分析、灵敏度分析和计算量。 提出一种多优化控制中心互动协调调度模式并应用于含分布式能源控制中心的电网优化调度。以优化控制中心为单位来分析分布式能源控制中心主动优化的特点。将传统的电网调度模型也转化为一个优化控制中心。各优化控制中心可按照自己的资源组成特点和多个优化目标并行独立优化以制定出力计划。基于互动协调调度模式,提出了并行优化和优先优化两种优化方式和正常和异常两种运行情况,并设计了两种优化方式和两种运行情况的协调优化方法。针对多优化控制中心并行优化中的冲突问题,,采用协同优化来协调优化控制中心间的耦合变量不一致,并通过协调满意度设定值来解决多优化控制中心并行优化的目标冲突问题。最后采用不同运行情况下的算例仿真来说明和验证所提的模型和方法。
[Abstract]:Under the background of promoting the development of distributed energy and the informatization of smart grid in China, considering the coordination of distributed energy and the current power dispatching mode, the contradiction between distributed energy generation (user) and power grid is solved. The active participation of distributed energy in power grid dispatching is a problem worth studying. The main research contents and results are as follows: according to the operation characteristics of virtual power plant, a multi-objective optimization method with priority is proposed. The idea of technology layer and economic layer of virtual power plant is concretely transformed into objective function with priority and solved by two-step decomposition method based on satisfaction representation. The joint optimal control model of virtual power plant and distribution network is established and solved by approximate dynamic programming method. In the joint optimization with distribution network, the fast control function of virtual power plant can improve the operation index of distribution network, such as frequency deviation, voltage deviation, power control and so on. Based on the energy characteristics of integrated charging, discharging and storage power stations, the coordinated dispatching of multiple charging and discharging storage power stations into the network is studied. Using the power transfer function of charging and discharging process of electric vehicle and battery, the SCOPF method is improved to decouple the time and space of charging and discharging node power scheduling. Firstly, all the distributed energy and charging and discharging power stations in the regional power network are considered as a whole by using the idea of virtual power plant, and the scheduling results of 24 periods are optimized to realize the decoupling in time, and then the topology structure of the power network is considered. Spatial decoupling is realized by optimizing charging and storing power. An interior point method combined with stochastic adjustment factor updating method is proposed to solve the stochastic optimal scheduling model based on chance constrained programming. The semi-invariant and Cornish-Fisher series method is used to solve the equivalent condition of computer constraint. The stochastic optimal scheduling problem is transformed into an optimal power flow model which can be solved by the interior point method, and an iterative updating method of the adjustment factor is proposed to realize the optimal power solution in the random environment. Finally, the proposed method is verified by using IEEE 14 and IEEE 118 bus system as an example, and the accuracy analysis, sensitivity analysis and computational complexity of the proposed method are analyzed. An interactive and coordinated scheduling model for multi-optimal control centers is proposed and applied to power grid optimal scheduling with distributed energy control centers. The characteristics of active optimization of distributed energy control center are analyzed in this paper. The traditional power grid dispatching model is also transformed into an optimal control center. Each optimization control center can make a force plan according to its own resource composition characteristics and multiple optimization objectives in parallel and independent optimization. Based on the interactive coordination scheduling mode, two optimization modes, parallel optimization and priority optimization, and two normal and abnormal operation conditions are proposed, and two optimization methods and two coordinated optimization methods are designed. In order to solve the conflict problem in parallel optimization of multi-optimization control centers, the coordinated optimization is used to coordinate the coupling variables between the control centers. The goal conflict problem of parallel optimization of multi-optimization control center is solved by coordinating satisfaction set value. Finally, the proposed model and method are illustrated and verified by the simulation examples under different operation conditions.
【学位授予单位】:上海交通大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM73
【参考文献】
相关期刊论文 前10条
1 孙健;刘锋;SI Jennie;郭文涛;梅生伟;;一种改进的近似动态规划方法及其在SVC的应用[J];电机与控制学报;2011年05期
2 胡庶;吴耀武;娄素华;熊信艮;;用户自备分布式发电与供电商的博弈[J];电力系统自动化;2006年20期
3 胡泽春;王锡凡;;考虑负荷概率分布的随机最优潮流方法[J];电力系统自动化;2007年16期
4 鲁宗相;王彩霞;闵勇;周双喜;吕金祥;王云波;;微电网研究综述[J];电力系统自动化;2007年19期
5 王成山;李鹏;;分布式发电、微网与智能配电网的发展与挑战[J];电力系统自动化;2010年02期
6 韩自奋;陈启卷;;考虑约束的风电调度模式[J];电力系统自动化;2010年02期
7 郑太一;冯利民;王绍然;王泽一;付小标;;一种计及电网安全约束的风电优化调度方法[J];电力系统自动化;2010年15期
8 赵俊华;文福拴;薛禹胜;董朝阳;辛建波;;计及电动汽车和风电出力不确定性的随机经济调度[J];电力系统自动化;2010年20期
9 于大洋;宋曙光;张波;韩学山;;区域电网电动汽车充电与风电协同调度的分析[J];电力系统自动化;2011年14期
10 茆美琴;孙树娟;苏建徽;;包含电动汽车的风/光/储微电网经济性分析[J];电力系统自动化;2011年14期
相关博士学位论文 前8条
1 魏庆来;基于近似动态规划的非线性系统最优控制研究[D];东北大学;2009年
2 陈海焱;含分布式发电的电力系统分析方法研究[D];华中科技大学;2007年
3 刘晓;新能源电力系统广域源荷互动调度模式理论研究[D];华北电力大学;2012年
4 邓佳佳;考虑分布式能源的电力系统优化运营模型研究[D];华北电力大学;2012年
5 徐振华;面向智能电网的广义综合负荷建模方法研究[D];湖南大学;2012年
6 陈安伟;智能电网技术经济综合评价研究[D];重庆大学;2012年
7 苗轶群;含电动汽车及换电站的微网优化调度研究[D];浙江大学;2012年
8 王瑞琪;分布式发电与微网系统多目标优化设计与协调控制研究[D];山东大学;2013年
本文编号:2036020
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2036020.html