基于近似动态规划的优化控制研究及在电力系统中的应用
[Abstract]:The optimal control problem based on the approximate dynamic programming (Approximate dynamic programming. ADP) is one of the hot topics in the field of control field in recent years. The approximate dynamic programming combining the thought of reinforcement learning is used to approximate the cost function and control strategy in the dynamic programming equation by using the approximate structure of the function to satisfy the optimality principle. The optimal cost function and the optimal control strategy. Therefore, the approximate dynamic programming successfully avoids the "dimensionality disaster" problem of the dynamic programming to solve the optimal control. However, the approximate dynamic programming theory and its algorithm have not been improved, and many theoretical and technical problems of the optimal control of dynamic systems are studied by ADP. For this reason, under the support of the National Natural Science Fund Project "dynamic global optimization and energy saving control theory and its application (50977008)" of the National Natural Science Foundation, this paper further studies some optimization control problems of dynamic system based on the approximate dynamic programming theory, and puts forward the iterative ADP algorithm suitable for different situations. And the ADP party is put forward. The application of the method to the power system extends the application scope of the ADP method. The main work and contributions of this paper are as follows: 1. a new optimal tracking control scheme based on ADP is proposed for the optimal tracking control problem of an unknown continuous linear system. First, the optimal tracking problem of the original system is transformed into an optimal tune of an augmented system. It is proved that the optimal control solution of the augmented system is equivalent to the standard solution of the optimal tracking control problem of the original system. Then, a new online ADP algorithm is given to solve the augmented algebraic Riccati equation online, and the optimal tracking controller.2. on line for the unknown system is realized, and a ADP based adaptive optimization is proposed. The optimal control scheme effectively solves the optimal control problem for a class of discrete affine nonlinear systems. First, two neural networks are used as online parameter structures to approximate the cost functions and optimal control laws respectively, which are called the evaluation network and the executive network respectively. On the basis of considering the neural network approximation error, the Lyapunov theory is adopted. It is proved that the system state and the weight estimation error of the neural network are all consistent and ultimate boundedness, and can guarantee the control input of the obtained control input in a small neighborhood of the optimal control input.3. for a class of H infinity control problems of a class of discrete nonlinear systems with external disturbances, and a new online adaptive strategy learner is proposed. Three neural networks are used as online parameter structures to design evaluation network, execute network and disturbance network, and give an online update law of network weight value. Based on the approximate error of neural network, it is proved that the system state and the estimation error of all network weight values are all consistent and ultimate boundedness on the basis of Lyapunov theory. And can ensure that the obtained control input is in a small neighborhood of the optimal control input.4., a new iterative two level DHP algorithm is proposed to solve the optimal control problem of a class of nonlinear switched systems with a saturated actuator. A non two order functional solution is used to execute the saturation constraint problem, and the control function is guaranteed. The number in the saturated actuator is a smooth function, and a new different iterative two level DHP algorithm is derived to solve the constrained HJB equation. The strict mathematical proof guarantees the convergence of the proposed iterative two DHP algorithm for the optimal tracking control problem of a class of discrete nonlinear switched systems, and an iterative ADP algorithm is designed. The optimal tracking hybrid control strategy is obtained. First, the optimal tracking control problem is transformed into an optimal control problem of an error switching system. Secondly, a new iterative two level ADP algorithm is given to solve the HJB equation of the error system. Finally, the convergence analysis of the algorithm is given to ensure that the tracking hybrid control strategy is obtained. The optimal.6. designs an iterative two stage epsilon -ADP algorithm, which effectively solves the finite time optimal control problem of a class of discrete nonlinear switched systems. First, an iterative two level ADP algorithm is given to solve the HJB equation, and the strict convergence analysis of the iterative algorithm is given. Then, the optimal control strategy is given, which makes the iteration of the iterative algorithm. The two level ADP algorithm can obtain an approximate optimal cost function which is close to the optimal value in the boundary of the epsilon error, thus realizing the load frequency control problem of the finite time optimal control.7. for the unknown power system by the finite time optimal control of the discrete nonlinear switched system, and proposes a design side of the online H robust load frequency controller based on the ADP. First, the H infinity control method is used to deal with the uncertainty of the system. Then, the two person zero sum differential game theory is used to solve the H infinity control problem. A data based online ADP algorithm is presented by using the ADP technology and Kronecker's product theory. The algorithm passes the online informatics of the system state and control input. The solution of algebraic Riccati equation is achieved, so that the load frequency control problem of fully unknown power system can be realized.
【学位授予单位】:东北大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:O221;TM711
【相似文献】
相关期刊论文 前10条
1 王翼;最优控制在经济系统中的应用[J];信息与控制;1980年06期
2 潘健;;二次型性能指标下的人口移民最优控制[J];广西大学学报(自然科学版);1985年02期
3 朱文骅;一种最优控制的胞映射算法[J];应用力学学报;1988年04期
4 毛云英,边馥萍;动态投入产出最优控制模型[J];数学的实践与认识;1992年01期
5 蒲志林;非线性发展系统最优控制的存在性及其应用[J];四川师范大学学报(自然科学版);1998年03期
6 张仁忠;带缓冲器的多出口串行生产线的无阻塞最优控制[J];纯粹数学与应用数学;2000年01期
7 于书敏,张仁忠;带缓冲器的多入口多出口串行生产线的无阻塞最优控制[J];哈尔滨师范大学自然科学学报;2000年03期
8 朱贵凤,商妮娜;阶形杆纵向振动的最优控制[J];太原理工大学学报;2001年05期
9 刘国志;动态投入产出最优控制模型[J];数学的实践与认识;2002年04期
10 潘颖,王超,盛严,陈双全;结构振动瞬时最优控制的一种时滞补偿算法[J];力学与实践;2002年05期
相关会议论文 前10条
1 王青;张颖昕;;“最优控制”课程的教学研究与实践[A];2011高等职业教育电子信息类专业学术暨教学研讨会论文集[C];2011年
2 王青;张颖昕;;最优控制课程实践教学的思考与探索[A];2011高等职业教育电子信息类专业学术暨教学研讨会论文集[C];2011年
3 付春江;王如彬;;手臂屈伸运动中上位最优控制对外部速度力场的补偿适应[A];中国力学学会学术大会'2009论文摘要集[C];2009年
4 时贞军;王长钰;;洗煤过程控制中的最优控制模型及求解方法[A];复杂巨系统理论·方法·应用——中国系统工程学会第八届学术年会论文集[C];1994年
5 郭磊;于瑞林;田发中;;跳变时刻状态受约束的跳变系统的最优控制[A];第二十四届中国控制会议论文集(上册)[C];2005年
6 卢容德;朱月华;;人体系统的最优控制研究[A];第六届全国人—机—环境系统工程学术会议论文集[C];2003年
7 吴庆林;陈宗海;董道毅;;量子最优控制研究综述[A];’2004系统仿真技术及其应用学术交流会论文集[C];2004年
8 陈育庭;邓慧红;;教学过程模型及其最优控制[A];数学及其应用文集——中南模糊数学和系统分会第三届年会论文集(下卷)[C];1995年
9 尹翔康;吴冲锋;;带随机参数线性系统的最优控制(Ⅱ):控制矩阵是确定性矩阵[A];全国青年管理科学与系统科学论文集(第2卷)[C];1993年
10 李旭东;王建举;;一类生产库存问题的最优控制[A];1994中国控制与决策学术年会论文集[C];1994年
相关博士学位论文 前10条
1 庞留勇;肿瘤治疗方案的数学模型研究及数值模拟[D];华中师范大学;2015年
2 张吉烈;基于单网络模糊及无模型自适应动态规划最优控制方法的研究[D];东北大学;2014年
3 秦春斌;基于近似动态规划的优化控制研究及在电力系统中的应用[D];东北大学;2014年
4 刘重阳;非线性切换动力系统的最优控制及应用[D];大连理工大学;2010年
5 邓留保;带跳的不确定最优控制及应用[D];南京理工大学;2013年
6 孟庆欣;有跳跃的随机系统的最优控制[D];复旦大学;2010年
7 江胜宗;非直井迹最优控制模型、算法及应用[D];大连理工大学;2002年
8 李春发;分布参数系统辨识与最优控制理论算法及应用[D];大连理工大学;2003年
9 魏庆来;基于近似动态规划的非线性系统最优控制研究[D];东北大学;2009年
10 李搏;主部系数含控制的偏微分方程最优控制[D];复旦大学;2011年
相关硕士学位论文 前10条
1 徐嘉龙;具有第一边值条件的双相Stefan问题自由边界的最优控制[D];东北师范大学;2015年
2 于丹;具有第二边值条件的双相Stefan问题自由边界的最优控制[D];东北师范大学;2015年
3 吴文婷;控制受约束的随机线性二次最优控制[D];复旦大学;2014年
4 张鹏举;多阶段间歇发酵过程的最优控制求解[D];大连理工大学;2015年
5 邵娇娇;微生物间歇发酵中酶催化非线性时滞动力系统的最优控制[D];大连理工大学;2015年
6 程关明;间歇发酵非线性动力系统的鲁棒最优控制[D];大连理工大学;2015年
7 康霞霞;两类具有常数输入率的SIRS模型的稳定性与最优控制[D];曲阜师范大学;2015年
8 马明;连续混沌系统的最优控制[D];扬州大学;2009年
9 赵彦娟;线性系统二次型性能指标的模糊最优控制[D];南京理工大学;2009年
10 蒋秀萍;一类非线性粘性色散波方程的最优控制[D];江苏大学;2009年
,本文编号:2119539
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2119539.html