基于改进人工鱼群算法的特定谐波消除策略研究
[Abstract]:With the rapid development of power electronic technology, inverter system has been widely used in the fields of high-power traction, AC / DC speed regulation, uninterruptible power supply, solar photovoltaic power generation and so on. Because of the limitation of PWM modulation mode, the problem of harmonic pollution is caused, especially in the field of switching loss, electromagnetic compatibility and waveform quality. How to reduce the harmonic content of inverter output has become the main research topic of scholars. Based on the research of various modulation strategies, this paper makes a deep research on the specific harmonic elimination modulation strategy which has better harmonic suppression effect. The difficulty of realizing the special harmonic elimination and modulation strategy lies in the solution of the specific harmonic elimination equations. At present, the main methods are traditional numerical method and intelligent algorithm. The traditional numerical method depends on the proper selection of initial value in the process of solution. Intelligent algorithm such as genetic algorithm, differential evolution algorithm is easy to fall into the local extremum, which affects the accuracy of the solution. In order to solve the above problems, the artificial fish swarm algorithm is proposed to solve the specific harmonic elimination equations, and the process of solving the specific harmonic elimination problem by artificial fish swarm algorithm is described in detail. In view of the lack of contact between artificial fish groups beyond the limits of horizon, the difference mutation operator is introduced to improve the artificial fish swarm algorithm. In view of the characteristics of the artificial fish swarm algorithm with many parameters, the moving step size and the visual domain range of the artificial fish swarm algorithm are discussed. The effects of crowding factor and differential mutation operator are analyzed in detail. Finally, the results of the improved artificial fish swarm algorithm are simulated and tested. By comparing the improved artificial fish swarm algorithm with other intelligent algorithms, it is shown that the improved artificial fish swarm algorithm has certain advantages in solving harmonic elimination problems, and the improved artificial fish swarm algorithm is applied to solve different switching angles. The switching angle can be used to build a special harmonic elimination simulation model. On the one hand, it can effectively control the amplitude of the fundamental wave according to the modulation system, on the other hand, it can effectively eliminate the harmonics of the specified frequency. Through the analysis of the parameters of the improved artificial fish swarm algorithm, the optimal moving step size, visual domain and differential mutation strategy are selected as the solution parameters. Finally, the effect of the special harmonic elimination modulation strategy based on the improved artificial fish swarm algorithm with different frequency and number of switching angles is verified on a two-level inverter power system.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM714.3;TP18
【参考文献】
相关期刊论文 前10条
1 叶满园;蔡鸿;李宋;;基于同伦算法的多电平逆变器SHEPWM控制技术[J];电力电子技术;2014年02期
2 陈金平;贺昱曜;巨永锋;周熙炜;;三电平逆变器SHEPWM牛顿下山法求解研究[J];电力电子技术;2013年09期
3 黄银银;费万民;;两电平逆变器半周期对称SHEPWM方法[J];电力自动化设备;2013年04期
4 朱思国;陆佳政;欧阳红林;李波;;基于谐波注入法的级联型逆变器谐波消除研究[J];电工技术学报;2012年08期
5 韦克康;郑琼林;周明磊;王琛琛;;低开关频率下混合脉宽调制方法研究[J];北京交通大学学报;2011年05期
6 王榕生;吴汉光;;消谐法SHEPWM的谐波影响数值分析[J];电工技术学报;2011年09期
7 张志;谢运祥;乐江源;陈林;;二极管钳位型单相三电平逆变器空间矢量脉宽调制方法[J];中国电机工程学报;2010年27期
8 姚祥光;周永权;李咏梅;;人工鱼群与微粒群混合优化算法[J];计算机应用研究;2010年06期
9 都小利;费万民;;多电平逆变器半周期对称SHEPWM方法[J];电工技术学报;2010年04期
10 费万民;都小利;居荣;吴勤;;基于等面积法的多电平逆变器SPWM方法[J];电工技术学报;2010年03期
相关博士学位论文 前5条
1 孙大南;地铁车辆牵引电传动系统控制关键技术研究[D];北京交通大学;2012年
2 王联国;人工鱼群算法及其应用研究[D];兰州理工大学;2009年
3 张兴;PWM整流器及其控制策略的研究[D];合肥工业大学;2003年
4 李晓磊;一种新型的智能优化方法-人工鱼群算法[D];浙江大学;2003年
5 佟为明;PWM逆变器特定消谐式谐波抑制技术的研究[D];哈尔滨工业大学;1999年
相关硕士学位论文 前2条
1 朱闻名;高速动车组网侧变流器研究[D];西南交通大学;2011年
2 喻超;基于SHE特定谐波发生装置的控制策略研究与应用[D];华中科技大学;2007年
,本文编号:2122193
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2122193.html