基于SCADA数据的风电机组电控系统故障诊断研究
[Abstract]:The electric control system of wind turbine has realized the control of wind turbine, such as self-start / shutdown, steady grid-connected, manual and automatic no-disturbance switching, variable speed frequency conversion control, automatic yaw control, decoupling control, variable pitch control, etc. Data monitoring and processing, automatic protection and fault recording, etc. With the rapid development of wind power industry, the trouble detection of wind turbine electronic control system is discussed and studied in this paper. By collecting and analyzing wind speed and operating parameters of wind turbine, the paper discusses the faults of variable propeller and main control PLC in electronic control system. Firstly, the paper collects the complete data of a wind farm for one year, then combines the operation data and maintenance data to sort out the common types of faults in the wind turbine electronic control system, and then uses the time domain analysis method, respectively. The wavelet analysis method and adaptive Kurtosis analysis method in time-frequency domain analysis are used to diagnose and analyze the fault of electronic control system. Finally, the simulation results of the above methods are carried out through the actual wind field data. Time domain analysis, time and frequency domain analysis and adaptive Kurtosis analysis are used to diagnose the fault of electronic control system. The time domain analysis can only roughly diagnose whether the equipment is abnormal or not. There are many rotating parts in the electric control system of wind turbine, which will produce certain vibration signals. These vibration signals have the characteristics of periodic variation but non-stationary. The time-frequency domain analysis method and adaptive Kurtosis method are used to analyze the non-stationary signals in the wind turbine electrical control system. The results are obvious and suitable for the fault diagnosis of the electronic control system. On the MATLAB platform, by analyzing the power ratio data and comparing the mean value, variance, mean square amplitude and peak value, a certain rule of fault detection is obtained.
【学位授予单位】:河北工业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TM315
【参考文献】
相关期刊论文 前10条
1 傅质馨;袁越;;海上风电机组状态监控技术研究现状与展望[J];电力系统自动化;2012年21期
2 李辉;李学伟;胡姚刚;杨超;赵斌;;风电机组运行状态参数的非等间隔灰色预测[J];电力系统自动化;2012年09期
3 邹见效;李丹;郑刚;曾斌;彭超;;基于机组状态分类的风电场有功功率控制策略[J];电力系统自动化;2011年24期
4 李辉;杨超;赵斌;唐显虎;郑维棋;;考虑变桨驱动电机特性的风电机组运行性能仿真[J];电力系统保护与控制;2011年18期
5 梁伟宸;许湘莲;庞可;杨明明;;风电机组故障诊断实现方法探讨[J];高压电器;2011年08期
6 任海军;何玉林;杜静;黄帅;苏东绪;李俊;;变速变桨距风力机功率控制策略[J];电网技术;2011年08期
7 李康;陈雪军;石湘;陈海小;胡湘江;陈略;;时频分析在船载天线和船舶动力系统故障诊断中的应用[J];遥测遥控;2011年04期
8 李辉;胡姚刚;杨超;李学伟;唐显虎;;并网风电机组运行状态的物元评估方法[J];电力系统自动化;2011年06期
9 马成龙;段斌;龙辛;;基于服务导向网络架构的风电场故障诊断支撑系统平台[J];电力系统自动化;2011年04期
10 汪海波;田炜;鲁斌;刘剑;;兆瓦级风电机组电动变桨距系统测试平台设计[J];电力系统自动化;2010年24期
相关博士学位论文 前2条
1 赵高强;大规模风电项目开发及并网运营优化管理研究[D];华北电力大学;2013年
2 刘小峰;振动信号非平稳特征的深层提取技术及远程诊断服务系统的研究[D];重庆大学;2007年
相关硕士学位论文 前7条
1 兰建武;基于LabVIEW的风机在线监测与故障诊断系统的研究[D];武汉科技大学;2012年
2 高q,
本文编号:2157625
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2157625.html