基于自适应模糊神经网络的无轴承异步电机控制
发布时间:2018-08-02 16:28
【摘要】:针对无轴承异步电机多变量、非线性、强耦合等特点,为实现其稳定悬浮控制,提出了一种基于自适应模糊神经网络推理系统(adaptive neuro-fuzzy inference system,ANFIS)的控制新策略。在分析无轴承异步电机径向悬浮力产生机理的基础上,推导出无轴承异步电机数学模型,基于ANFIS控制原理,完成了控制器设计,包括控制变量和隶属函数的选取、通过PID控制对输入输出数据的采集、根据选定的误差准则修正隶属函数参数以及采用Sugeno型ANFIS控制器训练FIS(fuzzy inference system)模型。基于MATLAB/Simulink仿真平台,对转速为6 000 r/min的无轴承异步电机控制系统的悬浮、转速、转矩响应进行了仿真分析。仿真结果表明该控制策略能在0.12 s内实现转子的稳定悬浮,且当负载转矩突变时,转子的悬浮性能并没有受到影响,转子径向偏移小于0.001mm。在转速突变后,控制系统也能较好的跟踪给定转速,稳定时的转速误差小于20 r/min,控制系统具有良好的动、静态性能。最后在无轴承异步电机控制系统试验平台上对所提策略开展了试验研究,试验结果同样表明,该控制策略能实现无轴承异步电机的稳定悬浮工作,转子径向位移峰峰值范围可以保持在80μm以内,系统响应快,鲁棒性强,控制精度较高,验证了该文提出的ANFIS控制方法的正确性和有效性。
[Abstract]:Aiming at the characteristics of multi-variable, nonlinear and strong coupling of bearingless asynchronous motor, a new control strategy based on adaptive fuzzy neural network reasoning system (adaptive neuro-fuzzy inference) is proposed to realize its stable suspension control. On the basis of analyzing the mechanism of radial suspension force of bearingless asynchronous motor, the mathematical model of bearingless asynchronous motor is deduced. Based on the control principle of ANFIS, the controller is designed, including the selection of control variable and membership function. The input and output data are collected by PID control, the membership function parameters are modified according to the selected error criterion, and the FIS (fuzzy inference system) model is trained by Sugeno ANFIS controller. Based on MATLAB/Simulink simulation platform, the suspension, speed and torque response of bearingless asynchronous motor control system with speed of 6 000 r/min are simulated and analyzed. The simulation results show that the proposed control strategy can realize the stable suspension of the rotor in 0.12 s, and when the load torque changes, the suspension performance of the rotor is not affected, and the radial deviation of the rotor is less than 0.001mm. After the speed change, the control system can track the given speed well, and the error of the speed is less than 20 r / min. The control system has good dynamic and static performance. Finally, the proposed strategy is tested on the bearingless asynchronous motor control system test platform. The experimental results also show that the control strategy can realize the stable suspension of bearingless asynchronous motor. The peak range of radial displacement of the rotor can be kept within 80 渭 m. The system has the advantages of fast response, strong robustness and high control precision. The correctness and effectiveness of the proposed ANFIS control method are verified.
【作者单位】: 江苏大学电气信息工程学院;江苏大学汽车工程研究院;
【基金】:国家自然科学基金项目(61104016、51305170、61174055) 中国博士后科学基金资助项目(2012M521012) 江苏省自然基金项目(BK20130515) 江苏高校优势学科建设工程项目(苏政办发[2011]6号)
【分类号】:TM343
[Abstract]:Aiming at the characteristics of multi-variable, nonlinear and strong coupling of bearingless asynchronous motor, a new control strategy based on adaptive fuzzy neural network reasoning system (adaptive neuro-fuzzy inference) is proposed to realize its stable suspension control. On the basis of analyzing the mechanism of radial suspension force of bearingless asynchronous motor, the mathematical model of bearingless asynchronous motor is deduced. Based on the control principle of ANFIS, the controller is designed, including the selection of control variable and membership function. The input and output data are collected by PID control, the membership function parameters are modified according to the selected error criterion, and the FIS (fuzzy inference system) model is trained by Sugeno ANFIS controller. Based on MATLAB/Simulink simulation platform, the suspension, speed and torque response of bearingless asynchronous motor control system with speed of 6 000 r/min are simulated and analyzed. The simulation results show that the proposed control strategy can realize the stable suspension of the rotor in 0.12 s, and when the load torque changes, the suspension performance of the rotor is not affected, and the radial deviation of the rotor is less than 0.001mm. After the speed change, the control system can track the given speed well, and the error of the speed is less than 20 r / min. The control system has good dynamic and static performance. Finally, the proposed strategy is tested on the bearingless asynchronous motor control system test platform. The experimental results also show that the control strategy can realize the stable suspension of bearingless asynchronous motor. The peak range of radial displacement of the rotor can be kept within 80 渭 m. The system has the advantages of fast response, strong robustness and high control precision. The correctness and effectiveness of the proposed ANFIS control method are verified.
【作者单位】: 江苏大学电气信息工程学院;江苏大学汽车工程研究院;
【基金】:国家自然科学基金项目(61104016、51305170、61174055) 中国博士后科学基金资助项目(2012M521012) 江苏省自然基金项目(BK20130515) 江苏高校优势学科建设工程项目(苏政办发[2011]6号)
【分类号】:TM343
【参考文献】
相关期刊论文 前10条
1 王高林;杨荣峰;张家皖;于泳;马建雄;蔡亮;徐殿国;;一种感应电机转子时间常数MRAS的在线辨识方法[J];电工技术学报;2012年04期
2 张勇军;孙寅飞;王京;;基于单维离散滑模的模型参考自适应转速辨识方法[J];电工技术学报;2012年04期
3 武俊峰;王世明;;一种基于模糊控制的两步法预测控制方法[J];电机与控制学报;2010年07期
4 尹忠刚;刘静;钟彦儒;杨立周;;基于双参数模型参考自适应的感应电机无速度传感器矢量控制低速性能[J];电工技术学报;2012年07期
5 王喜莲;葛宝明;王旭东;;一种无轴承开关磁阻电机悬浮性能分析[J];电机与控制学报;2013年01期
6 刘志文;夏文波;刘明波;;基于复合储能的微电网运行模式平滑切换控制[J];电网技术;2013年04期
7 朱q,
本文编号:2160013
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2160013.html