当前位置:主页 > 科技论文 > 电力论文 >

MMC-HVDC物理模拟系统子模块控制器的研制

发布时间:2018-09-19 15:42
【摘要】:随着全球能源紧缺和环境污染等问题的日益严峻,可再生能源(如风能、太阳能等)的开发利用容量也不断地增加,向一些孤立小岛、海上钻探平台等无源负荷供电以及城市扩容等使得采用交流输电技术或者采用传统的直流输电技术联网已经变得很不经济。上世纪90年代后期发展了新一代直流输电技术,这种技术采用基于全控型可关断电力电子器件的电压源换流器(Voltage Source Converter,VSC),是一种更加灵活、经济和环保的输电方式,可以有效解决以上问题。 柔性直流输电的核心是电压源换流器,电压源换流器分为两电平换流器和多电平换流器两种,其中模块化多电平换流器(Modular Multilevel Converter, MMC)由于较低的开关频率和较好的输出电压波形,在柔性直流输电中得到广泛应用,称为MMC-HVDC。同采用晶闸管换流技术的传统直流输电相比,MMC-HVDC具有能够用于海上风电并网、分布式电源并网和向无源网络供电等诸多优点,也是目前学术界研究的热点问题。但是,研究工作多是在理论计算和数字仿真的基础上进行的,基于物理模拟系统的研究还很少,因此,搭建一套完整的MMC-HVDC物理仿真系统进行相关控制保护研究显得格外重要。MMC-HVDC物理模拟系统是新能源电力系统国家重点实验室(华北电力大学)“混合直流输电平台”重点建设项目之一,基于MMC-HVDC物理模拟系统,对一次系统拓扑结构、控制器架构、系统控制策略和子模块控制器进行了研究。 MMC-HVDC采用两端换流器交流侧出口相接的环网结构以降低对实验室电源的要求,按照不同的功能,每端换流器被划分为电源柜、充电柜、模块柜和直流柜。系统控制器采用三级结构,分别为极控制和保护系统(Pole ControlProtection system, PCP),阀基控制系统(Valve Basic Controller, VBC)和子模块控制器(SubModule Controller, SMC),对各级控制实现的功能和彼此间的协调控制策略进行了介绍。研究重点是MMC子模块控制器,首先依照各部分不同的功能介绍了控制器的硬件组成,其次设计了SMC和VBC之间的串行通讯协议和两者之间采用的协调控制策略,再次介绍了子模块可能发生的故障和发生故障后采取的保护策略。最后设计了一套用于MMC子模块稳态测试所用的测试平台,对其硬件结构和软件控制策略进行了设计,作为子模块的功能试验和质量检测方案。
[Abstract]:As global energy shortages and environmental pollution become increasingly acute, the development and utilization capacity of renewable energy sources (such as wind, solar, etc.) continues to increase, turning to isolated islands, Passive load power supply such as offshore drilling platform and urban expansion make it uneconomical to use AC transmission technology or traditional DC transmission technology. A new generation of HVDC transmission technology was developed in the late 1990s. This technology adopts (Voltage Source Converter,VSC (voltage source converter based on fully controlled turn-off power electronic devices), which is a more flexible, economical and environmentally friendly transmission mode. Can effectively solve the above problems. The core of flexible DC transmission is voltage source converter. Voltage source converter is divided into two types: two-level converter and multilevel converter. The modularized multilevel converter (Modular Multilevel Converter, MMC) has lower switching frequency and better output voltage waveform. It is widely used in flexible DC transmission, called MMC-HVDC. Compared with conventional DC transmission using thyristor converter technology, MMC-HVDC has many advantages such as being used in offshore wind power grid connection, distributed power supply and passive power supply, etc. It is also a hot issue in academic circles. However, the research work is mostly carried out on the basis of theoretical calculation and digital simulation, and the research based on physical simulation system is still few, so, It is very important to build a complete set of MMC-HVDC physical simulation system for related control and protection. MMC-HVDC physical simulation system is the "hybrid DC transmission platform" in the State key Laboratory of New Energy Power system (North China University of Electric Power). One of the key construction projects, Based on MMC-HVDC physical simulation system, the topology and controller architecture of primary system are discussed. The system control strategy and sub-module controller are studied. MMC-HVDC adopts the loop network structure of AC side outlet of the converter to reduce the requirement of laboratory power supply. According to different functions, each terminal converter is divided into power cabinet. Charging cabinets, modular cabinets and DC cabinets. The system controller adopts a three-level structure, which is the pole control and protection system (Pole ControlProtection system, PCP), valve base control system (Valve Basic Controller, VBC) and the sub-module controller (SubModule Controller, SMC), respectively. The functions of each level control and the coordinated control strategy between each other are introduced. The research focus is on the MMC sub-module controller. Firstly, the hardware composition of the controller is introduced according to the different functions of each part. Secondly, the serial communication protocol between SMC and VBC and the coordinated control strategy between them are designed. The possible faults of the sub-module and the protection strategy adopted after the failure are introduced again. Finally, a test platform is designed for the steady-state test of MMC submodule. The hardware structure and software control strategy are designed as the function test and quality testing scheme of the sub-module.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM721.1

【参考文献】

相关期刊论文 前10条

1 刘钟淇;宋强;刘文华;;基于模块化多电平变流器的轻型直流输电系统[J];电力系统自动化;2010年02期

2 管敏渊;徐政;;模块化多电平换流器型直流输电的建模与控制[J];电力系统自动化;2010年19期

3 郑飞;费树岷;周杏鹏;;基于DSP和FPGA的光伏并网控制器设计与实现[J];电力自动化设备;2011年02期

4 汤广福;贺之渊;滕乐天;易荣;何维国;;电压源换流器高压直流输电技术最新研究进展[J];电网技术;2008年22期

5 周月宾;江道灼;郭捷;梁一桥;胡鹏飞;;模块化多电平换流器型直流输电系统的启停控制[J];电网技术;2012年03期

6 赵鹏;肖岚;;轻型高压直流输电中的光纤驱动及检测策略[J];电源学报;2011年06期

7 曾南超;高压直流输电在我国电网发展中的作用[J];高电压技术;2004年11期

8 屠卿瑞;徐政;郑翔;管敏渊;;模块化多电平换流器型直流输电内部环流机理分析[J];高电压技术;2010年02期

9 王奎;郑泽东;李永东;;新型模块化多电平变换器电容电压波动规律及抑制方法[J];电工技术学报;2011年05期

10 敬华兵;年晓红;;新型的模块化多电平换流器子模块保护策略[J];电网技术;2013年07期



本文编号:2250557

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2250557.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3aeab***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com