智能电网最优潮流计算方法及其收敛性研究
[Abstract]:In the environment of smart grid, power flow calculation as its basic analysis tool has a very important position. In order to combine the three requirements of power system economy, security and power quality with the power flow calculation perfectly, people put forward the optimal power flow calculation. The optimal power flow is favored by the power system planners and dispatchers, and plays an important role in power system planning, operation, analysis and control. In this paper, an optimal initial value selection method is proposed to solve the sensitivity problem of Newtonian power flow calculation. The problem of non-convergence of power flow calculation caused by improper selection of initial value is solved. Secondly, a generalized gradient projection optimal power flow algorithm based on Fisher function is proposed to solve the initial value sensitivity problem and the excessive amount of calculation in the optimal power flow calculation by the interior point method and the simplified gradient method. Finally, in order to get faster convergence speed of optimal power flow and more convenient to deal with discrete variables, a double Hopfield neural network is used to solve the optimal power flow. The main work of this paper is as follows: (1) the convergence criterion of Newtonian power flow calculation is proposed to determine whether the initial value can converge the power flow equation. If the initial value is feasible, the iterative number of power flow calculation is estimated preliminarily according to the proposed criterion of maximum iterative degree estimation. Through the above two criteria, we can make a preliminary judgment on whether the selected initial value can make the power flow equation converge, thus avoiding the redundant calculation caused by the random selection of the initial value. In view of the sensitivity of the initial value of Newton's method, combined with the proposed two criteria, The simulation results of IEEE standard node system and Tongliao power network show that the proposed method is effective. (2) the generalized ladder based on Fisher function is proposed. Degree projection optimal power flow algorithm. Compared with the simplified gradient method, the proposed method does not have to solve the power flow equation every iteration, thus greatly reducing the computational complexity. The technique of dynamic selection of penalty function is used to avoid the ill-conditioned condition caused by improper selection of penalty function. Compared with the interior point method, the range of initial value selection is enlarged, and the instability of convergence process caused by improper initial value selection or the slow progress of optimization are avoided. The simulation results of IEEE standard node system verify the effectiveness of the algorithm and simplify the gradient method. The interior point method and the generalized gradient projection method are used to calculate the optimal power flow in Tongliao power network. The simulation results verify the fast convergence and stability of the generalized gradient projection method based on Fisher function. (3) double Hopfield neural network is used to calculate the optimal power flow. The dual Hopfield neural network is divided into two parts: first, a network is used to optimize the penalty function term, so that the solution falls in the feasible solution subspace. Another network is used to optimize the objective function and solve the problem in the direction of feasible descent of the objective function. The two networks are independent of each other and run alternately. The double Hopfield neural network avoids the contradiction between satisfying the constraint condition and obtaining the high quality solution when the Hopfield network is used to solve the optimal problem. The algorithm greatly improves the computation speed. The simulation results of IEEE-based standard node system verify that the dual Hopfield neural network method has better optimization effect than that of Hopfield neural network.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM744
【相似文献】
相关期刊论文 前10条
1 胡德峰;张步涵;姚建光;;基于改进粒子群算法的多目标最优潮流计算[J];电力系统及其自动化学报;2007年03期
2 王鲁,相年德,王世缨;应用简化梯度法研究分布式并行最优潮流计算[J];中国电机工程学报;1991年S1期
3 刘敏华,郑洁,严彩梅;基于可变容差法的电力系统最优潮流计算[J];电力自动化设备;2003年11期
4 赵波,郭创新,曹一家;基于粒子群优化算法和动态调整罚函数的最优潮流计算(英文)[J];电工技术学报;2004年05期
5 俞俊霞,赵波;基于改进粒子群优化算法的最优潮流计算[J];电力系统及其自动化学报;2005年04期
6 刘耀年;李迎红;张冰冰;李春亮;;基于人工鱼群算法的最优潮流计算[J];电工电能新技术;2006年04期
7 李林川;李磊;黄海浪;;市场环境下考虑暂态稳定约束的最优潮流计算[J];天津大学学报;2006年09期
8 崔鹏程;陈明榜;向铁元;;基于粒子群优化算法与混合罚函数法的最优潮流计算[J];电网技术;2006年S2期
9 林小朗;王磊;;改进粒子群优化算法的电力系统最优潮流计算[J];广东电力;2007年03期
10 黄涛;严正;刘福斌;杨立兵;;采用最优潮流计算华东电力市场稳定限额因子的方案研究[J];华东电力;2007年12期
相关会议论文 前6条
1 杨琳;孔峰;;基于梯度蜂群混合算法的电力系统最优潮流计算[A];中南六省(区)自动化学会第二十九届学术年会论文集[C];2011年
2 胡罡;侯延进;刘震;;基于混合算法的最优潮流计算[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年
3 崔鹏程;陈明榜;向铁元;;基于粒子群优化算法与混合罚函数法的最优潮流计算[A];2006电力系统自动化学术交流研讨大会论文集[C];2006年
4 余健明;马元社;张凡;;基于矢量距免疫算法的电力系统最优潮流计算[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年
5 孙冰;黄倩;汤海燕;;基于PSASP的矿区电网多目标最优潮流计算分析[A];煤矿机电一体化新技术创新与发展2012学术年会论文集[C];2012年
6 游桂杨;韦化;阳育德;;基于Taylor级数法的暂态稳定约束最优潮流计算[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年
相关硕士学位论文 前5条
1 姜舒婷;直流电网中潮流控制器的影响及其配置方法研究[D];华北电力大学;2015年
2 蔡超;智能电网最优潮流计算方法及其收敛性研究[D];东北大学;2014年
3 于赞梅;改进粒子群优化算法在最优潮流计算中的应用[D];华北电力大学(河北);2007年
4 李彬;考虑联络线暂态稳定性约束的最优潮流计算[D];天津大学;2005年
5 潮铸;基于二阶轨迹灵敏度的暂态稳定约束最优潮流计算[D];华南理工大学;2011年
,本文编号:2258696
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2258696.html