当前位置:主页 > 科技论文 > 电力论文 >

电力电子变压器中高频变压器磁芯和绕组特性的研究

发布时间:2018-11-02 15:47
【摘要】:电力电子变压器(Power Electronic Transformer,简称PET)是一种新型变压器,它通过电力电子器件和电力电子变换技术,对能量进行转换与控制,能降低传统变压器的体积和重量,实现节材和节能目的。高频变压器是PET的核心器件,起隔离和传输功率的作用,其性能好坏直接决定PET的性能好坏。性能差的变压器损耗大,效率低,影响系统电路的稳定性和可靠性,甚至引起电力电子器件的故障,导致能量转换失败。 本文明确了高频变压器的研究难点,分析了它的等效电路,进行了高频磁性材料特性实验。设计了不同绕组结构的10kVA高频变压器,并对其进行了相关电磁参数、空载特性、短路特性的测量和研究。制作了用于20kHz、10kVA光伏逆变系统的高频变压器。 首先,对高频变压器的等效电路和参数计算进行了分析,根据电磁感应定律设计了高频磁性材料特性测试的实验平台,分析了测量结果,得出了铁氧体、非晶合金和纳米晶合金三种磁性材料正弦激励下的高频特性,绘制了它们的磁化曲线和磁滞回线,,并对磁性材料不同频率下的损耗进行了计算,为设计和制作高频变压器提供了具有参考价值的材料特性数据。 其次,分析了磁性材料损耗的传统模型,在高频磁性材料特性测试得到数据的基础上,得到了纳米晶磁芯的高频磁芯损耗模型,即高频矫顽力、高频磁芯损耗和最大磁通密度、频率的关系。基于三维拟合提出了依据斯坦梅兹(Steinmetz)系数判定高频磁芯损耗的方法,为高频变压器磁芯材料的选型提供有力的参考依据。 最后,用有限元方法分析计算了高频变压器绕组在不同条件下的高频效应,以及不同绕组结构对高频变压器电磁参数的影响。设计并完成了两种绕组结构(三明治式、交叉换位式)的高频变压器样机,通过对它们电磁参数的测定及特性分析,明确了交叉换位式绕制技术可减少高频变压器损耗的优势。基于以上实验研究,研制出用于20kHz、10kVA光伏逆变系统的高频变压器,该高频变压器采用了改进的交叉换位式结构,其效率最高可达99.3%。
[Abstract]:Power electronic transformer (Power Electronic Transformer,) is a new type of transformer. It can reduce the volume and weight of traditional transformer by means of power electronic device and power electronic transformation technology to convert and control the energy. The purpose of saving materials and saving energy is realized. High frequency transformer is the core device of PET. It plays the role of isolating and transmitting power. Its performance directly determines the performance of PET. The transformer with poor performance has a large loss and low efficiency, which affects the stability and reliability of the system circuit, and even causes the failure of the power electronic device, which leads to the failure of the energy conversion. In this paper, the research difficulties of high frequency transformer are defined, its equivalent circuit is analyzed, and the characteristic experiment of high frequency magnetic material is carried out. The 10kVA high-frequency transformer with different windings is designed, and its electromagnetic parameters, no-load characteristics and short-circuit characteristics are measured and studied. A high frequency transformer for 20 kHz 10 kVA photovoltaic inverter system has been fabricated. First of all, the equivalent circuit and parameter calculation of high frequency transformer are analyzed. According to the law of electromagnetic induction, the experimental platform for testing the characteristics of high frequency magnetic material is designed, and the measurement results are analyzed, and the ferrite is obtained. The high frequency characteristics of amorphous alloy and nanocrystalline alloy under sinusoidal excitation are studied. Their magnetization curves and hysteresis loops are drawn, and the loss of magnetic material at different frequencies is calculated. The material characteristic data with reference value are provided for the design and manufacture of high frequency transformer. Secondly, the traditional loss model of magnetic material is analyzed. On the basis of the data obtained from the characteristic test of high frequency magnetic material, the high frequency core loss model of nanocrystalline magnetic core is obtained, that is, high frequency coercivity, high frequency core loss and maximum flux density. The relation of frequency. Based on 3D fitting, a method of determining high frequency core loss based on Steinmez (Steinmetz) coefficient is proposed, which provides a powerful reference basis for the selection of core materials for high frequency transformers. Finally, the high frequency effect of high frequency transformer windings under different conditions and the influence of different winding structures on the electromagnetic parameters of high frequency transformer are analyzed and calculated by finite element method. A prototype of two kinds of windings (sandwich type, cross transposition type) is designed and completed. By measuring their electromagnetic parameters and analyzing their characteristics, the advantages of cross-transposition winding technology to reduce the loss of high frequency transformer are determined. Based on the above experimental research, a high-frequency transformer for 20kHz 10kVA photovoltaic inverter system is developed. The high frequency transformer adopts an improved cross-transposition structure, and its efficiency can reach 99.3%.
【学位授予单位】:河北工业大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM433

【相似文献】

相关期刊论文 前10条

1 沙占友;葛家怡;武瑞红;;单片开关电源高频变压器的设计要点[J];电源技术应用;2003年06期

2 唐青松;吴强;曹怀志;金新民;彭方正;;一种高频变压器的研制方法[J];变流技术与电力牵引;2007年06期

3 沙占友;王彦朋;孟志永;;高频变压器设计软件PI Transformer Designer 6.5及其应用[J];电源技术应用;2007年11期

4 刘修泉;曾昭瑞;黄平;;高频变压器的设计与实验研究[J];变压器;2009年03期

5 杨佳乐;许伯强;;仿真分析对高频变压器研制方案的可行性验证[J];电子设计工程;2012年22期

6 张梦云;;高频变压器发展探析[J];中小企业管理与科技(下旬刊);2012年12期

7 杨佳乐;许伯强;;平面高频变压器的设计与仿真[J];黑龙江电力;2013年02期

8 郭向勇;;高频变压器设计规则与冷却系统[J];变压器;1986年12期

9 邵学飞,李威强;浅析高频变压器分布参数的变化趋势[J];电力电子技术;1995年01期

10 袁光明;闪光灯高频变压器的检修[J];家庭电子;1996年01期

相关会议论文 前5条

1 凌跃胜;赵争菡;李奇男;李永建;;高频变压器动态电容的数值计算[A];电工理论与新技术学术年会论文集[C];2005年

2 张志钊;黄念慈;;高频变压器传递低频电功率技术的研究[A];展望新世纪——’02学术年会论文集[C];2002年

3 张志钊;黄念慈;;高频变压器传递低频电功率技术的研究[A];中国电工技术学会电力电子学会第八届学术年会论文集[C];2002年

4 毕耀宗;;非晶软磁材料在高频变压器上的应用[A];第十届全国电除尘、第二届脱硫学术会议论文集[C];2003年

5 赵志英;李正兴;马海啸;龚春英;;高频变压器分布电容及其影响分析[A];2006中国电工技术学会电力电子学会第十届学术年会论文摘要集[C];2006年

相关重要报纸文章 前5条

1 成都 立新;正激式高频变压器的设计[N];电子报;2007年

2 广州 邓槐;如何拆除高频变压器[N];电子报;2007年

3 杜毓穗;用ET521判断高频变压器及电视高压包故障[N];电子报;2009年

4 山东 周虎;45~925MHz接收头的几点改进[N];电子报;2008年

5 江苏 赵忠仁;美的S35产U-C型加湿器电路解析与故障维修(上)[N];电子报;2012年

相关博士学位论文 前1条

1 赵争菡;电力电子变压器中高频变压器磁芯和绕组特性的研究[D];河北工业大学;2014年

相关硕士学位论文 前10条

1 朱洪文;高频变压器等效模型与参数计算测定[D];河北工业大学;2012年

2 吴清玲;高压高频变压器的研究与设计[D];沈阳理工大学;2014年

3 吴海波;光伏发电系统中高频变压器的设计[D];华北电力大学;2012年

4 杨佳乐;高频变压器在光伏逆变电路中的应用[D];华北电力大学;2013年

5 赵争菡;开关电源中高频变压器分布电容的分析与计算[D];河北工业大学;2006年

6 张志钊;高频变压器传递低频电功率的研究[D];四川大学;2003年

7 胡晓辰;高频变压器磁饱和电流测量技术研究[D];河北科技大学;2013年

8 张佩;开关电源中高频变压器电磁兼容预测研究[D];河北工业大学;2012年

9 张启亮;基于高频变压器的单相补偿式交流稳压电源的研究[D];天津大学;2014年

10 于洋;用于污染物处理的电弧等离子体电源研制[D];大连理工大学;2007年



本文编号:2306228

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2306228.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户ccbd0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com