当前位置:主页 > 科技论文 > 电力论文 >

风电场中飞轮储能系统的控制策略研究

发布时间:2018-11-02 16:29
【摘要】:随着新能源发电技术的逐渐发展成熟,风力发电系统在现代电力系统中占据了相当的比例。然而,风能属于典型的间歇性能源,风的产生存在一定的随机性。所以,风力发电系统的可控性一般弱于传统的发电系统,这就严重影响了电力系统的安全运行。风力发电系统的大规模应用面临着严峻考验。储能技术的发展为解决风机的这些问题提供了可能性。在风力发电系统中增加储能设备,可以根据现实情况的需要,控制储能系统与风机进行有效的能量交换,这将有助于风电系统的可控性和安全性。在电力系统中添加储能设备,也是未来智能电网建设的一项基本要求。飞轮储能技术凭借其诸多优势,在增强风电场发电系统运行可靠性和效率方面可以发挥至关重要的作用。本文提出了一种应用于永磁直驱式同步风力发电机的风场级飞轮储能系统的协调控制策略。首先,对于飞轮储能单元的控制,本文设计了相应的充放电控制策略,并在转速-电流双闭环控制的基础上,提出了一种改进的神经元自适应PID控制器,将其用于控制飞轮电机的运行,进而实现飞轮储能单元的充放电。然后根据经典的李亚普诺夫稳定性理论,提出了对该算法的稳定性的证明方法,并通过数字仿真验证了算法的有效性和可行性。其次,与一般的飞轮储能研究不同,在本文的研究中,除了为风电场中的每台风机配备一台飞轮储能单元之外,还设计了一个飞轮储能矩阵系统(flywheel energy storage matrix system,FESMS),并联在风电场的并网出口端。对于飞轮储能矩阵,本文提出了它的电网拓扑结构设计方案,并按照主从控制的模式,设计了储能矩阵与风电场之间的充放电控制策略和安全控制策略。在飞轮储能系统的配合下,风速波动较大的时段,风电场依然可以向电网输送相对平缓的有功功率。最后,通过分析永磁直驱式风电系统遭遇低电压故障时面临的问题,设计了电网故障状态飞轮储能系统的充放电策略,在不影响风能利用效率、避免能量浪费的基础上,提高了永磁直驱式风机的低电压穿越能力。本文的研究成果为飞轮储能技术的发展提供了参考,为风电场与飞轮储能系统的应用指出了方向和思路。
[Abstract]:With the development of new energy generation technology, wind power system occupies a considerable proportion in modern power system. However, wind energy is a typical intermittent energy, and wind generation has a certain randomness. Therefore, the controllability of wind power generation system is generally weaker than that of traditional generation system, which seriously affects the safe operation of power system. The large-scale application of wind power system is facing a severe test. The development of energy storage technology provides the possibility to solve these problems of fan. Adding energy storage equipment to wind power generation system can control the energy exchange between energy storage system and fan according to the actual situation, which will be helpful to the controllability and safety of wind power system. Adding energy storage equipment to power system is also a basic requirement of smart grid construction in the future. Flywheel energy storage technology, with its many advantages, can play an important role in enhancing the reliability and efficiency of wind power generation system. This paper presents a coordinated control strategy for wind field flywheel energy storage system applied to permanent magnet direct-drive synchronous wind turbine. Firstly, for the control of flywheel energy storage unit, the corresponding charge and discharge control strategy is designed, and an improved neuron adaptive PID controller is proposed on the basis of rotational speed and current double closed loop control. It is used to control the operation of flywheel motor and realize charging and discharging of flywheel energy storage unit. Then, according to the classical Lyapunov stability theory, a method to prove the stability of the algorithm is proposed, and the validity and feasibility of the algorithm are verified by digital simulation. Secondly, different from the general research of flywheel energy storage, in this paper, in addition to one flywheel energy storage unit for each typhoon in a wind farm, a flywheel energy storage matrix system (flywheel energy storage matrix system,FESMS) is also designed. Parallel in the wind farm grid outlet. For the flywheel energy storage matrix, the design scheme of its topology structure is presented, and the charging and discharging control strategy and the safety control strategy between the energy storage matrix and the wind farm are designed according to the master-slave control mode. With the cooperation of flywheel energy storage system, when wind speed fluctuates greatly, wind farm can still transmit relatively gentle active power to power grid. Finally, the charging and discharging strategy of flywheel energy storage system in fault state of power grid is designed by analyzing the problems faced by permanent magnet direct drive wind power system when it encounters low voltage fault, on the basis of not affecting the efficiency of wind energy utilization and avoiding energy waste. The low voltage traversing ability of permanent magnet direct drive fan is improved. The research results in this paper provide a reference for the development of flywheel energy storage technology, and point out the direction and train of thought for the application of wind farm and flywheel energy storage system.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM614

【参考文献】

相关期刊论文 前3条

1 蒙永民;李铁才;荀尚峰;;飞轮储能分布式电能控制技术放电部分的仿真研究[J];电网技术;2008年24期

2 刘燕华;田茹;张东英;张旭;周继惠;;风电出力平滑效应的分析与应用[J];电网技术;2013年04期

3 汤凡;刘天琪;李兴源;;用于风电场功率控制的飞轮储能系统仿真研究[J];电网与清洁能源;2010年02期

相关硕士学位论文 前1条

1 王志明;双馈式变速恒频风力发电机组并网运行能力优化策略[D];华北电力大学(北京);2011年



本文编号:2306338

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2306338.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b0e31***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com