当前位置:主页 > 科技论文 > 电力论文 >

新型能量转化与储存材料的制备及其电化学性能研究

发布时间:2018-11-29 11:40
【摘要】:石油和天然气等传统化石能源,由于其不可再生性、低的能源转化效率以及在使用过程中对环境造成的污染等,激励科学家们寻求可取代传统化石能源的高效绿色能源,能量转化与储存技术也在此背景下应运而生,以燃料电池技术、超级电容器技术和锂离子电池技术为代表。能量转化和能量储存是对能源有效利用的两个方面,最近提出的一种‘自充电能量单元’概念更是实现了两者的完美结合。但是,无论是能量转化技术还是能量储存技术中,电极材料的选取和制备都是至关重要的。基于此,在本文中,我们使用简单的合成方法制备了多种纳米结构材料,并对它们进行了结构和相应的电化学性能表征,为制作可能的能量转化与储存一体化器件作准备。本文具体研究的内容和结论如下: 1.使用外加磁场和简单的N2H4还原法,制备了大量的锯齿形状Ni基亚微米线,其直径大约为500-700nm,长度为10-30μm。缓慢供应作为Ni(Co)源的Ni2+离子是形成锯齿形结构的一个控制因素。电化学测试的结果表明,制备的锯齿形Ni基亚微米线与Ni纳米颗粒和光滑的Ni亚微米线相比,对甲醇的催化氧化有更好的活性和稳定性,这是由于这种独特的锯齿形结构兼备亚微米线的几何线型结构和纳米颗粒尺寸效应。此外,由于Ni和Co元素的协同作用,NiCo亚微米线的电子传输性能得到极大改善,表现出比Ni亚微米线更优异的电化学活性。因此,由于制备简单、成本低和产量高等优点,这类锯齿形亚微米线将会是一种很有前途的应用于碱性燃料电池的非贵金属阳极催化剂。 2.以AgNO3为Ag源,在乙二醇体系中合成Ag纳米线;然后在氨-乙醇水热体系下,Ag纳米线有效地嵌入到氮掺杂石墨烯纳米片层中,从而得到氮掺杂石墨烯/Ag纳米线复合材料。复合材料中大量嵌入的Ag纳米线阻止了氮掺杂石墨烯片的重新堆叠,且形成三维的多孔通道,从而使得催化剂参加氧气催化还原的活性面积大幅增加,同时也促进了02气和OH-离子的传输。由于氮掺杂石墨烯与Ag纳米线之间的这种协同效应,氮掺杂石墨烯/Ag纳米线复合材料表现出比单纯的氮掺杂石墨烯和Ag纳米线更好的电催化性能,它们有望用作高效的碱性燃料电池的阴极催化剂。 3.使用水热反应合成α-MnO2纳米线,未经任何的表面改性,在Co(NO3)2和NH4F前驱溶液中,二步水热反应合成了一种新的α-MnO2内米线/C0304纳米颗粒复合结构。NH4F和反应前驱液的浓度是合成这种复合结构的关键因素。高浓度前驱体溶液中合成的复合结构是一种bead on string结构,大的C0304纳米颗粒(约120nm)分布在α-MnO2纳米管上。而在低浓度前驱液中α-MnO2纳米管表面完全覆盖着一层超细的C0304纳米颗粒(约10-20nm),形成一层纳米薄层,这提高了电荷的传输性质,阻碍了含Mn物种的溶解,并兼顾了离子传输至α-MnO2纳米管,无论是α-MnO2纳米管还是超细的Co304纳米粒子对电荷存储都表现出增强的电化学活性,其比容量和倍率性能表现出比α-MnO2纳米管和物理混合的α-MnO2纳米管和Co304纳米颗粒更好,此外,即使在2000次循环充放电后,仍保持87.5%的初始比电容值。这种精心设计的复合结构具有优异的能量存储特性,这也提供给了一种在不使用碳基或聚合物基的导电材料,实现构建高性能的超级电容器的可能途径。 4.以泡沫镍为基底,我们首次制备一种独特的三维分枝状单晶β-Co(OH)2纳米线阵列。这种结构的形成归因于在生长过程中β-Co(OH)2特定的拓扑结构和crystal splitting效应。接着,以分枝状β-Co(OH)2纳米线阵列为骨架,在纳米线外包覆Mn02超薄纳米片片层,在4500C加热后,构建了分枝状Co3O4/MnO2核壳纳米线阵列。在10mA/cm2电流密度下,分枝状Co3O4/MnO2核壳纳米线阵列具有0.99F/cm2的面积电容,并且仍然保留了69.3%在1mA/cm2下的电容值(1.43F/cm2)。如此出色的电化学性能归因于这种独特的核壳结构,即多孔Co304纳米线‘核’和超薄Mn02纳米片‘壳’形成的强力协同效应。这个特殊的分枝状β-Co(OH)2在超级电容器和其它电化学设备上具有很好的应用前景。 5.以二步阳极氧化的氧化铝为模板,四硫代钼酸铵为前驱体,经简单的热分解反应获得一种分枝状MoS2纳米管,且该纳米管具有特殊的竹节状结构。使用扫描电子显微镜和高分辨透射电子显微镜对这种分枝状MoS2纳米管进行了研究,并讨论了纳米管的竹节状结构的可能形成机制。四硫代钼酸铵在模板孔中的形态决定形成的纳米管形貌,纳米管的孔径和长度取决于氧化铝模板的孔径和厚度,而管壁厚度取决于氧化铝模板纳米孔壁的四硫代铝酸铵的量。对比使用大纳米孔径氧化铝模板(200nm)发现,纳米管竹节状的微观形貌受前驱液与孔内壁间润湿性
[Abstract]:The traditional fossil energy sources such as oil and natural gas, due to their non-renewable energy, low energy conversion efficiency and the pollution to the environment during the use, encourage the scientists to seek efficient green energy sources which can replace the traditional fossil energy sources, The energy conversion and storage technology is also under this background, and is represented by the fuel cell technology, the super capacitor technology and the lithium ion battery technology. Energy conversion and energy storage are two aspects of energy efficient utilization, one of the most recent Self-charging energy unit 'The concept is a perfect combination of both. However, both energy conversion technology and energy storage technology are critical for the selection and preparation of electrode materials. On the basis of this, in this paper, we have prepared a variety of nanostructured materials using a simple synthesis method, and characterized by their structure and corresponding electrochemical performance to prepare the possible energy conversion and storage integrated devices. The contents and conclusions of the study are as follows: 1. Using an external magnetic field and a simple N2H4 reduction method, a large number of saw-tooth-shaped Ni-Chia-micron lines were prepared with a diameter of about 500-700n. m, the length is 10-30. m u.m. Ni2 + ions which are slowly supplied as the source of the Ni (Co) are a control for forming the zigzag structure. The results of the electrochemical test show that the prepared zigzag Ni-1 micron line has better activity and stability compared with the Ni nano-particles and the smooth Ni sub-micron line. Sex, this is because this unique zigzag structure has both the geometric line structure of the sub-micron line and the size effect of the nano-particle In addition, due to the synergistic effect of the Ni and Co elements, the electronic transmission performance of the NiCo sub-micron line is greatly improved, and the electrochemical activity is better than that of the Ni sub-micron line. and therefore, because of the advantages of simple preparation, low cost, high yield and the like, the saw-toothed sub-micron line will be a promising non-noble metal anode catalyst for alkaline fuel cells and 2, using AgNO3 as an Ag source to synthesize the Ag nano-wire in the glycol system, and then effectively embedding the Ag nano-wire into the nitrogen-doped graphene nano-layer under the ammonia-ethanol water thermal system, so as to obtain the nitrogen-doped graphene/ Ag nano-wire complex, the large number of embedded Ag nanowires in the composite material prevent the re-stacking of the nitrogen-doped graphene sheets and form a three-dimensional porous channel, so that the active area of the catalyst to participate in the oxygen catalytic reduction is greatly increased, and the 02 gas and the OH-ions are also promoted due to the synergistic effect between the nitrogen-doped graphene and the Ag nano-wire, the nitrogen-doped graphene/ Ag nanowire composite material exhibits better electrocatalytic performance than the pure nitrogen-doped graphene and the Ag nano-wire, and is expected to be used as the cathode of the high-efficiency alkaline fuel cell. Co (NO3) 2 and NH4F precursor solution and two-step hydrothermal reaction in the Co (NO3) 2 and the NH4F precursor solution were synthesized by hydrothermal reaction. The concentration of the NH4F and the reaction precursor is the synthesis of such a composite structure. the composite structure synthesized in the high-concentration precursor solution is a bead on string structure, and the large C0304 nano-particles (about 120nm) are distributed in the high-concentration precursor solution, and the surface of the carbon-MnO2 nanotube in the low-concentration precursor completely covers an ultra-fine C0304 nano-particle (about 10-20nm) to form a thin layer of nano-layer, which improves the transmission property of the electric charge, O 2 nanotubes, whether the I-MnO2 nanotubes or the ultra-fine Co304 nanoparticles exhibit enhanced electrochemical activity for charge storage, exhibit a specific capacity and rate performance than the Al-MnO2 nanotubes and the physically mixed O2-MnO2 nanotubes and Co304 nanoparticles Better, and, in addition, 87.5% of the initial charge was maintained even after the 2000 cycle charge and discharge. This well-designed composite structure has excellent energy storage characteristics, which also provides a conductive material that does not use a carbon-based or polymer-based material to achieve the construction of a high-performance super-capacitor A unique three-dimensional branched single-crystal I-Co (OH) was prepared for the first time on the basis of foam nickel) 2 nanowire arrays. The formation of such a structure is due to the particular topology and crystal spli of the HCO3-Co (OH) 2 during the growth process. and then, a branch-like Co3O4/ MnO2 is constructed after the nano-wire is heated by 4500C by taking a branch-like carbon-Co (OH) 2 nanowire array as a framework, and coating the Mn02 ultrathin nanosheet layer outside the nanowire, The core-shell nanowire array. The branch-like Co3O4/ MnO2 core-shell nanowire array has an area capacitance of 0.99F/ cm2 at a current density of 10mA/ cm2, and a capacitance value of 63.9% at 1mA/ cm2 (1.4 3F/ cm2). This excellent electrochemical performance is due to this unique core shell structure, i.e., porous Co3 04 Nanowires, core' and ultra-high thin Mn 02 nanosheet metal shell 'formation The strong synergistic effect of this special branched-co (OH) 2 on the supercapacitors and other electrochemical devices The invention has the advantages of good application prospect, 5, adopting two-step anodised aluminium oxide as a template, the tetrathiurite as a precursor, and obtaining a branched MoS2 nano tube by a simple thermal decomposition reaction, The branch-like MoS2 nanotubes were studied by scanning electron microscope and high-resolution transmission electron microscope. The possible formation mechanism of the structure. The morphology of the tetrathiurates in the template holes determines the morphology of the nanotubes. The pore size and length of the nanotubes depend on the pore size and the thickness of the alumina template, and the thickness of the pipe wall is determined by the nanopore wall of the alumina template. The micro-morphology of the bamboo section of the nanotubes was found to be affected by the use of a large-diameter alumina template (200nm).
【学位授予单位】:合肥工业大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM53;TB383.1

【共引文献】

相关期刊论文 前10条

1 秦刚;何凤英;郭光华;;原位法制备通孔AAO模板的原理和工艺[J];半导体技术;2010年09期

2 陈东;宋国君;彭智;佘希林;李建江;韩萍;;简单蚀刻法制备具有可控高度的金属纳米线阵列[J];功能材料与器件学报;2007年04期

3 陈仲欣;卢红斌;;石墨烯-聚苯胺杂化超级电容器电极材料[J];高等学校化学学报;2013年09期

4 郑浩;高健;王少飞;李泓;;锂电池基础科学问题(Ⅵ)——离子在固体中的输运[J];储能科学与技术;2013年06期

5 杨e,

本文编号:2364897


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2364897.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户10e02***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com