当前位置:主页 > 科技论文 > 电力论文 >

交流永磁同步直线电机伺服控制技术研究

发布时间:2018-12-06 15:47
【摘要】:交流永磁同步直线电机无间隙、高加速度、高速度以及高带宽的传动特性在数控机床等高端装备制造领域具有极大的应用前景。动态精度和运行平稳性是评价运动执行机构的重要指标,然而直驱进给系统阻尼小、存在推力波动等问题,使高速直驱进给系统在抵抗外部扰动方面具有固有缺陷,动态精度低,稳定性差,降低了加工效率、精度和工件质量,引起工件变形,限制了直线电机的推广应用。本文旨在开展高速高精度伺服控制技术研究,提高直线电机动态性能,为直线电机的推广应用做出有意义的探索。 首先,论文分析直线电机的国内外研究和应用现状,总结了影响交流永磁同步直线电机伺服系统性能的关键因素;对交流永磁同步直线电机的数学模型进行了推导,并设计了交流伺服系统的PID控制器;分析了伺服控制器负反馈控制方法的优缺点,开展了前馈补偿算法、运动轨迹规划方法的研究。 其次,根据所设计的交流伺服系统控制结构,对交流永磁同步直线电机伺服驱动器进行了硬件和软件实现。 最后,开展了基于数据的交流伺服系统数学建模方法的研究,采用伪随机信号作为系统激励信号对直线电机伺服系统动态特性进行辨识;利用所设计的交流伺服驱动器和NI PXI-6251数据采集板卡搭建了整个伺服系统频率响应测试平台,对所设计交流伺服驱动器性能进行了测试,完成了交流永磁同步高速直线电机伺服系统特性测试实验,建立了交流永磁同步电机伺服系统的速度开环的相对精确的数学模型。 论文开发了交流永磁同步直线电机伺服驱动器,搭建了系统频率响应测试平台,基于数据对系统特性进行辨识,,建立了交流永磁同步直线电机机电系统的数学模型,解决了伺服系统控制中控制对象模型不能较全面反映系统特性的问题。通过本文的研究,为实现交流永磁同步直线电机的高速高精度运动控制提供了技术基础,具有广泛的应用前景。
[Abstract]:Ac permanent magnet synchronous linear motor (PMSM) with no clearance, high acceleration, high speed and high bandwidth has great application prospect in the field of NC machine tools and other high-end equipment manufacturing. Dynamic precision and running smoothness are important indexes for evaluating motion actuators. However, there are some problems such as low damping and fluctuating thrust in direct drive feed system, which make high-speed direct drive feed system have inherent defects in resisting external disturbance. The dynamic precision is low, the stability is poor, the machining efficiency, precision and workpiece quality are reduced, the workpiece deformation is caused, and the popularization and application of linear motor is limited. The purpose of this paper is to develop the research of high speed and high precision servo control technology, to improve the dynamic performance of linear motor, and to make a meaningful exploration for the popularization and application of linear motor. Firstly, this paper analyzes the domestic and international research and application status of linear motor, summarizes the key factors that affect the performance of AC permanent magnet synchronous linear motor servo system. The mathematical model of AC permanent magnet synchronous linear motor is deduced and the PID controller of AC servo system is designed. The advantages and disadvantages of the negative feedback control method of servo controller are analyzed, and the feedforward compensation algorithm and motion trajectory planning method are studied. Secondly, according to the control structure of AC servo system, the hardware and software of AC permanent magnet synchronous linear motor servo driver are implemented. Finally, the mathematical modeling method of AC servo system based on data is studied. The pseudo-random signal is used as the excitation signal to identify the dynamic characteristics of linear motor servo system. Using the designed AC servo driver and NI PXI-6251 data acquisition board, the frequency response test platform of the whole servo system is built, and the performance of the designed AC servo driver is tested. The test experiment of AC permanent magnet synchronous high speed linear motor servo system is completed, and a relatively accurate mathematical model of speed open loop of AC permanent magnet synchronous motor servo system is established. In this paper, the AC permanent magnet synchronous linear motor servo driver is developed, and the system frequency response test platform is set up. Based on the data, the characteristics of the system are identified, and the mathematical model of the AC permanent magnet synchronous linear motor electromechanical system is established. The problem that the control object model can not reflect the characteristics of the servo system is solved. Through the research in this paper, it provides the technical foundation for realizing the high speed and high precision motion control of the AC permanent magnet synchronous linear motor, and has a wide application prospect.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM359.4

【参考文献】

相关期刊论文 前10条

1 赵希梅;郭庆鼎;;提高轮廓加工精度的零相位自适应鲁棒交叉耦合控制[J];电工技术学报;2007年12期

2 王丽梅;武志涛;孙宜标;金抚颖;;直接驱动XY平台轮廓误差分析及法向交叉耦合控制[J];电机与控制学报;2010年09期

3 孙宜标 ,郭庆鼎;交流永磁直线伺服系统的神经网络—滑模双自由度控制[J];电气传动;2002年01期

4 谭威;罗仁泽;高文刚;周慧琪;;基于TMS320F28335的DSP最小系统设计[J];工业控制计算机;2012年04期

5 林瑶瑶;仲崇权;;伺服驱动器转速控制技术[J];电气传动;2014年03期

6 陈海龙,李宏;基于MATLAB的伪随机序列的产生和分析[J];计算机仿真;2005年05期

7 严天宏;许畅;李青;许昌;陈学东;;高速超精运动台的离散滑模控制研究[J];控制工程;2010年04期

8 王敏;;浅析数控机床技术现状[J];机械制造;2012年08期

9 张勇;姚艺华;卢琴芬;;基于TMS320F2812的永磁直线电机伺服控制研究[J];机电工程;2014年01期

10 刘爱民,张锦辉,高君;直线电机的推力波动及其抑制方法[J];沈阳工业大学学报;2003年06期



本文编号:2366275

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2366275.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6b061***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com