当前位置:主页 > 科技论文 > 电力论文 >

基于滑模变结构控制的风力发电机组双PWM变流器的设计与仿真研究

发布时间:2018-12-31 12:57
【摘要】:随着全球经济的快速发展,人类对能源的需求日益增加。由于地球上煤炭、石油等常规资源日益匮乏,并且对常规资源的利用也会给环境带来许多污染问题,所以为了解决能源和环境问题,我们在合理的利用煤炭、石油等常规资源的同时,必须大力发展利用可再生资源。而风能作为一种安全、环保、新型的可再生能源,取之不尽、用之不竭。随着风力发电技术的成熟,风力发电的成本也在不断地降低。而在风力发电领域,直驱型风力发电机组已经成为一个重要的研究方向。本文基于直驱式风力发电机组对双PWM变流器的控制策略进行了分析和研究,将滑模变结构的控制策略应用在双PWM变流器的控制系统中,并在MATLAB仿真软件中建立风力发电系统的仿真模型,通过仿真实验,证明本文所提出的设计方法是可行的。本文主要针对直驱风力发电机组双PWM变流器的控制系统进行了建模和仿真研究。首先,本文介绍了直驱永磁风力发电系统的基本结构及其相关特性,并详细介绍了各组成部分的基本原理,在此基础上建立了各组成部分的数学模型,具体包括风力机模型、传动系统模型、永磁同步发电机模型、双PWM变流器的数学模型、中间直流环节的数学模型。其次,重点介绍了滑模变结构控制的基本原理,针对非奇异终端滑模在离平衡点较远处动态性能差的缺点,设计了一种具有快速收敛性的非奇异终端滑模面。并基于滑模变结构控制原理下分别设计了网侧PWM变流器直流侧电压、d轴电流、q轴电流的滑模控制器,并详细介绍了SVPWM脉宽调制的基本原理及其实现方法。第三,先介绍了最大功率点跟踪(MPPT)方法和永磁同步发电机的矢量控制原理,重点阐述了基于最佳叶尖速度比的最大功率点跟踪控制和零d轴电流矢量控制的实现方法,并在此基础上介绍了机侧PWM变流器的转速外环、电流内环的双闭环控制原理。然后基于滑模变结构控制理论设计了机侧PWM变流器的转速、d轴电流、q轴电流的滑模控制器。最后在风力发电系统中对永磁同步发电机无位置传感器的控制进行了研究,设计了滑模观测器模型,并利用该模型估计永磁同步发电机转子转速和转子位置,来代替位置传感器的作用,实现了永磁同步发电机无位置传感器控制。最后,在MATLAB仿真软件中搭建了网侧PWM变流器控制的仿真模型、机侧PWM变流器控制的仿真模型以及滑模观测器的仿真模型。接着对风电系统的整体模型进行仿真实验,通过仿真结果分析可知,本文设计风力发电机组的双PWM变流器的控制策略能够实现风能的最大功率点跟踪,并且实现电网电压的单位功率因数并网,控制系统具有良好的动态性能和稳态性能。并在此基础上,建立了基于滑模观测器的风力发电系统的仿真模型,通过仿真分析可知,基于滑模观测器的风力发电系统能够对永磁同步发电机的转子转速和转子位置进行精确地估算,实现了对永磁同步发电机的无位置传感器控制。
[Abstract]:With the rapid development of the global economy, human demand for energy is increasing. Because of the increasing shortage of conventional resources such as coal and oil on the earth, and the utilization of the conventional resources can bring a lot of pollution to the environment, in order to solve the problems of energy and environment, we can reasonably utilize the conventional resources such as coal, oil and the like, The use of renewable resources must be vigorously developed. As a safe, environment-friendly and new type of renewable energy, wind energy is inexhaustible. With the mature of the wind power generation technology, the cost of wind power generation is also decreasing. In the field of wind power generation, the direct drive type wind generating set has become an important research direction. In this paper, the control strategy of the dual PWM converter is analyzed and studied based on the direct drive type wind generating set, and the control strategy of the sliding mode variable structure is applied to the control system of the dual PWM converter, and the simulation model of the wind power generation system is established in the MATLAB simulation software, It is proved that the design method proposed in this paper is feasible. In this paper, the modeling and simulation of the control system of the double-PWM converter of the direct-drive wind-driven generator set are studied. Firstly, this paper introduces the basic structure and related characteristics of the direct-drive permanent-magnet wind power generation system, and introduces the basic principle of each component in detail. On this basis, the mathematical model of each component is established, including the wind turbine model and the transmission system model. The model of the permanent-magnet synchronous generator, the mathematical model of the double-PWM converter and the mathematical model of the intermediate DC link. Secondly, the basic principle of the sliding mode variable structure control is introduced, and a non-singular terminal sliding mode with fast convergence is designed for the disadvantage of the dynamic performance difference of the non-singular terminal sliding mode at the far distance from the equilibrium point. Based on the control principle of the sliding mode variable structure, the DC side voltage, the d-axis current and the q-axis current of the grid-side PWM converter are respectively designed, and the basic principle of the SVPWM pulse width modulation and its realization method are introduced in detail. Thirdly, the method of maximum power point tracking (MPPT) and the principle of the vector control of the permanent magnet synchronous generator are introduced, and the realization method of the maximum power point tracking control and the zero d-axis current vector control based on the optimal blade tip speed ratio is given. On the basis of this, the double closed-loop control principle of the rotating speed outer ring and the current inner ring of the machine-side PWM converter is introduced. Then, the rotational speed, d-axis current and q-axis current of the machine-side PWM converter are designed based on the sliding mode variable structure control theory. In the end, the control of the position sensor of the permanent magnet synchronous generator is studied in the wind power generation system, the model of the sliding mode observer is designed, and the rotor speed and the rotor position of the permanent magnet synchronous generator are estimated by the model to replace the position sensor. and the position sensor control of the permanent-magnet synchronous generator is realized. Finally, the simulation model of the control of the network-side PWM converter, the simulation model of the machine-side PWM converter and the simulation model of the sliding mode observer are set up in the MATLAB simulation software. then the whole model of the wind power system is simulated and tested, and the simulation result analysis shows that the control strategy of the double-PWM converter of the wind generating set can realize the maximum power point tracking of the wind energy and realize the unit power factor of the grid voltage and the network, The control system has good dynamic performance and steady-state performance. On the basis of this, the simulation model of the wind power generation system based on the sliding mode observer is established, and the simulation analysis shows that the wind power generation system based on the sliding mode observer can accurately estimate the rotor speed and the rotor position of the permanent magnet synchronous generator, and the position-free sensor control of the permanent-magnet synchronous generator is realized.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM315;TM46

【相似文献】

相关期刊论文 前10条

1 陈培民;五相混合式步进电动机PWM调频调压驱动[J];华侨大学学报(自然科学版);1995年02期

2 张奇伟;陈国定;赵国炳;;双馈风力发电系统的PWM变流技术[J];机电工程;2009年08期

3 赵学平;李欣;陈杰;边姜;;电动助力转向系统永磁直流电机PWM控制模式研究[J];系统仿真学报;2010年01期

4 郑雪钦;;双矢量PWM双馈风力发电系统并网控制[J];厦门理工学院学报;2013年03期

5 粟梅;肖鹏;孙尧;;随机脉冲位置PWM及其在矩阵变换器中的实现[J];中国电机工程学报;2006年06期

6 李慧;朱德文;;基于PWM控制的高速开关电磁阀在汽车防抱死制动系统中的应用[J];机械研究与应用;2007年03期

7 林勇军,李娟娟,张敬华;PWM供电下的永磁无刷直流电动机仿真研究[J];合肥工业大学学报(自然科学版);2003年02期

8 钱平,刘勤;零转换—PWM有源功率因数校正器的实现[J];上海应用技术学院学报(自然科学版);2001年01期

9 贾贵玺,徐伟,郭宝钥,张臣堂;同步发电机励磁系统中PWM控制的仿真研究[J];中国工程科学;2005年06期

10 黄明;;基于PWM控制的动态无功补偿装置研究[J];电工电气;2012年05期

相关会议论文 前10条

1 陈权;姜卫东;;PWM控制中点钳位式三电平变换器通态损耗分析[A];安徽节能减排博士科技论坛论文集[C];2007年

2 张晓冰;张昌玉;任美辉;梁原华;;程控电度表校验台PWM电源关键技术的研究[A];08全国电工测试技术学术交流会论文集[C];2008年

3 白煜;;单片机PWM的应用[A];新世纪 新机遇 新挑战——知识创新和高新技术产业发展(下册)[C];2001年

4 王德伟;刘惠康;周铭秋;;双PWM变频器原理分析[A];冶金企业自动化、信息化与创新——全国冶金自动化信息网建网30周年论文集[C];2007年

5 谭惊涛;周志健;;小型风力发电用PWM全桥变流器简介[A];中国农机工业协会风能设备分会《中小型风能设备与应用》(2014年第1期)[C];2014年

6 王剑飞;李建林;胡书举;鄂春良;;背靠背PWM变流器在永磁直驱型风力机上的应用[A];2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集[C];2008年

7 韩亚超;;PWM新型雨刷控制器的设计[A];第五届河南省汽车工程科技学术研讨会论文集[C];2008年

8 高潮;;一种新型高性能恒频PWM谐振开关变流器[A];第二十六届中国控制会议论文集[C];2007年

9 陈一飞;邓燕;;基于差时PWM气体流量控制的气缸开环速度控制研究[A];第八届全国信息获取与处理学术会议论文集[C];2010年

10 夏玲;;异步电动机PWM变频调速系统的建模与仿真[A];’2004系统仿真技术及其应用学术交流会论文集[C];2004年

相关重要报纸文章 前2条

1 广东 王泽雄;基于PWM逆变技术的12V~48V四挡可调通用充电器[N];电子报;2003年

2 西安 赵彦萍;用PWM放大器SA08实现400Hz电源[N];电子报;2005年

相关博士学位论文 前3条

1 许春雨;软开关三相PWM逆变技术研究[D];上海大学;2005年

2 杨达亮;主动配电网PWM变流器动态高品质控制方法研究[D];广西大学;2014年

3 袁庆庆;双三电平PWM变频器低开关频率关键技术研究[D];中国矿业大学;2014年

相关硕士学位论文 前10条

1 陈金水;基于极谐振软开关的PWM功率放大器研究与设计[D];电子科技大学;2015年

2 向志强;基于双PWM变流器的永磁直驱风电系统电压稳定性研究[D];新疆大学;2015年

3 黎值源;基于单DSP控制的双PWM变频器的整流器的研究与设计[D];东北大学;2013年

4 张浩;双PWM变流器控制系统设计[D];浙江工业大学;2015年

5 赵煜华;基于模糊PI控制的三相PWM变流器研究[D];浙江工业大学;2015年

6 李星宇;大功率交直交PWM变流器电磁能量变换的研究[D];冶金自动化研究设计院;2014年

7 何宗领;基于滑模变结构控制的风力发电机组双PWM变流器的设计与仿真研究[D];东北大学;2014年

8 庞辉;基于PWM控制的动态无功补偿装置的建模与仿真研究[D];合肥工业大学;2005年

9 黎职富;基于高频PWM的电液比例控制系统的研究与设计[D];湖南大学;2008年

10 杨勇;汽车用稀土永磁发电机与PWM稳压控制技术的研究[D];山东理工大学;2008年



本文编号:2396618

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2396618.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b5820***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com