当前位置:主页 > 科技论文 > 电力论文 >

数据压缩方法研究及其在电力系统中的应用

发布时间:2019-02-19 19:27
【摘要】:随着经济的发展和社会的进步,高质量的电能成为电力系统和电力用户的共同需求,这就要求更高效的电能质量检测与分析技术,而这又以电力数据的采集和压缩为基础。近年来,研究人员在电力数据压缩方面进行了各种方法的研究与尝试。传统的有损压缩方法在电力数据量巨大的前提下或多或少会存在数据的损失,往往会丢失信号的关键特征;无损压缩方法能够保持原始信息完整,,但要求较高的硬件条件,占用更多的资源。 本文深入研究了压缩感知理论在电能质量数据压缩以及重构中的应用,并引入传统的电能质量无损压缩算法LZW作为对比。压缩感知理论不依赖于Nyquist采样定理,采样率从信号本身的结构和特性出发,远低于传统采样频率,在采集端就将传统的信号采集与压缩两个步骤合二为一,大大减小了数据量的处理。与LZW算法相对比,压缩感知理论在压缩比和重构误差两个指标上面都有不错的表现。 首先,本文分类介绍了数据压缩方法的基本原理以及压缩感知理论的研究现状和发展趋势,并且参照IEEE电能质量有关标准以及有关国内外文献对电能质量扰动信号进行了分类,构建了电能质量扰动信号的数学模型。 其次,本文阐述了LZW无损压缩算法与压缩感知方法的基本理论,在两种方法的理论基础上分别介绍了信号压缩与重构的实现过程,并且在理论上总结了两种方法的优缺点以及应用的必要条件。 最后,本文在电能质量扰动信号数学模型的基础上分别对两种算法进行了仿真实验,并进行了重构性能分析,以压缩效果和重构误差这两个标准对两种方法进行了评价与比较,对压缩感知理论未来的发展方向提出了自己的见解。
[Abstract]:With the development of economy and the progress of society, high quality electric energy becomes the common demand of power system and power users, which requires more efficient power quality detection and analysis technology, which is based on the collection and compression of power data. In recent years, researchers have studied and tried various methods in power data compression. The traditional lossy compression method can lose the data more or less under the premise of the huge power data, and often lose the key features of the signal. Lossless compression method can maintain the integrity of original information, but requires higher hardware conditions and takes up more resources. In this paper, the application of compression sensing theory in power quality data compression and reconstruction is deeply studied, and the traditional power quality lossless compression algorithm, LZW, is introduced as a comparison. Compression sensing theory does not depend on the Nyquist sampling theorem. The sampling rate is far lower than the traditional sampling frequency from the structure and characteristics of the signal itself. At the acquisition end, the two steps of traditional signal acquisition and compression are combined together. The data processing is greatly reduced. Compared with LZW algorithm, compression sensing theory has good performance on compression ratio and reconstruction error. Firstly, this paper introduces the basic principle of data compression method, the research status and development trend of compression sensing theory, and classifies the power quality disturbance signal with reference to the IEEE power quality standards and related literature at home and abroad. The mathematical model of power quality disturbance signal is constructed. Secondly, the basic theory of LZW lossless compression algorithm and compression sensing method is introduced, and the realization process of signal compression and reconstruction is introduced based on the two methods. The advantages and disadvantages of the two methods and the necessary conditions for their application are summarized theoretically. Finally, on the basis of the mathematical model of power quality disturbance signal, two algorithms are simulated, and the reconstruction performance is analyzed. The two methods are evaluated and compared according to the compression effect and the reconstruction error. The author puts forward his own opinion on the future development of the theory of compressed perception.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM711

【参考文献】

相关期刊论文 前10条

1 于文金;阎永刚;郝玲;余恒鑫;李芬;;基于小波理论的广西低温阴雨灾害天气波动特征[J];地理科学进展;2011年09期

2 贾清泉;于连富;董海艳;王宁;田杰;;应用原子分解的电能质量扰动信号特征提取方法[J];电力系统自动化;2009年24期

3 肖湘宁,徐永海;电能质量问题剖析[J];电网技术;2001年03期

4 张斌;张东来;;电力系统采集数据压缩品质影响规律研究[J];电网技术;2012年04期

5 吴逍;纪国宜;;基于谐波小波包理论检测微弱信号的研究[J];电子测量技术;2010年06期

6 冯浩;谢盛平;郑贺伟;;暂态电能质量实时监测和分析系统[J];电子测量技术;2011年01期

7 石光明;刘丹华;高大化;刘哲;林杰;王良君;;压缩感知理论及其研究进展[J];电子学报;2009年05期

8 练秋生;陈书贞;;基于解析轮廓波变换的图像稀疏表示及其在压缩传感中的应用[J];电子学报;2010年06期

9 金坚;谷源涛;梅顺良;;压缩采样技术及其应用[J];电子与信息学报;2010年02期

10 刘记红;黎湘;徐少坤;庄钊文;;基于改进正交匹配追踪算法的压缩感知雷达成像方法[J];电子与信息学报;2012年06期

相关博士学位论文 前1条

1 应蓓华;用于无线传感网的低能耗数据压缩[D];清华大学;2010年



本文编号:2426796

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2426796.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fe15c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com