当前位置:主页 > 科技论文 > 电力论文 >

交流特高压输电线路电磁环境的仿真计算

发布时间:2019-04-28 11:41
【摘要】:随着我国经济的快速发展和人民生活水平的不断提高,特高压输电系统的建设和研究成为我国电力工业的当务之急。当电压等级发展到特高压阶段,输电线路工频电磁场强度也将随着增大,引起电磁兼容性或电气安全性问题,对动、植物和人体也可能造成影响。为了满足电磁环境控制要求和优化电网设计,需要对特高压输电线路的电磁环境问题进行研究。目前我国特高压输电线路电磁环境问题的研究还处于初级阶段,需要基于电磁场计算模型和研究成果发展评估我国特高压输电线路电磁环境的方法。在这样的背景下,本文利用模拟电荷法对交流特高压输电线路主要的电磁环境工频电场和工频磁场的分布情况以及影响因素进行了研究。 本文首先以1000kV三相单回路水平排列交流特高压输电线路为例,详细介绍了交流特高压输电线路工频电场的计算步骤。编程仿真后得到交流特高压输电线路距离地面1.5米处的工频电场的横向分布规律。其次,,利用工频电场的计算模型,分析和总结特高压输电线路工频电场的主要影响因素。仿真结果表明,导线分裂间距、相导线之间的距离、输电线分裂导线数和输电线对地高度对工频电场的分布影响比较明显,次导线半径的影响很小。因此可以考虑从影响较大的四个因素上来优化设计特高压输电线路,从而减小输电线路工频电场强度。第三,在简化特高压输电线路的基础上,详细地介绍了1000kV三相单回路水平排列特高压交流输电线路工频磁场的二维计算模型,编程仿真后得到特高压交流输电线距离地面1.5米处的工频磁场横向分布规律。利用计算模型研究工频磁场的影响因素,仿真结果表明,减小输电线各相之间的距离和输电线中的电流以及增大导线的对地高度都可以使输电线路下方的工频磁场减小。
[Abstract]:With the rapid development of China's economy and the continuous improvement of people's living standards, the construction and research of UHV transmission system has become an urgent task for China's electric power industry. When the voltage level develops to the ultra-high voltage stage, the power-frequency electromagnetic field intensity of the transmission line will increase, which will cause electromagnetic compatibility or electrical safety problems, and may also affect the animal, plant and human body. In order to meet the requirements of electromagnetic environment control and optimize the design of power grid, it is necessary to study the electromagnetic environment of UHV transmission lines. At present, the research on the electromagnetic environment of UHV transmission lines in China is still in its infancy. It is necessary to develop a method to evaluate the electromagnetic environment of UHV transmission lines in China based on the electromagnetic field calculation model and research results. Under this background, the distribution of power-frequency electric field and power-frequency magnetic field in AC UHV transmission line and its influencing factors are studied by means of simulated charge method in this paper, and the distribution of power-frequency electric field and power-frequency magnetic field in AC UHV transmission line are studied. Taking the 1000kV three-phase single loop horizontal arrangement AC UHV transmission line as an example, the calculation steps of the power frequency electric field of the AC UHV transmission line are introduced in detail in this paper. After programming simulation, the transverse distribution of power frequency electric field of AC UHV transmission line is obtained, which is 1.5 meters away from the ground. Secondly, using the calculation model of power frequency electric field, the main influencing factors of UHV transmission line power frequency electric field are analyzed and summarized. The simulation results show that the distribution of the power frequency electric field is affected by the distance between the phase wires, the number of the split wires and the height of the transmission line to the ground, while the radius of the secondary wire has little effect on the distribution of the power frequency electric field. Therefore, the UHV transmission line can be optimized to reduce the power-frequency electric field intensity of the transmission line by considering the four factors which have a great influence on the UHV transmission line. Thirdly, on the basis of simplifying UHV transmission line, the two-dimensional calculation model of power frequency magnetic field of 1000kV three-phase single loop horizontal arrangement UHV AC transmission line is introduced in detail. After programming simulation, the transverse distribution of power frequency magnetic field of UHV AC transmission line is obtained, which is 1.5 meters away from the ground. The influence factors of the power frequency magnetic field are studied by using the calculation model. The simulation results show that reducing the distance between the phases of the transmission line and the current in the transmission line and increasing the height to the ground of the conductor can reduce the power frequency magnetic field below the transmission line.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM723

【参考文献】

相关期刊论文 前10条

1 中国电工技术学会特高压输变电技术考察团;;俄罗斯、乌克兰超、特高压输变电技术发展近况[J];电力设备;2003年02期

2 刘开俊;王怡萍;;中国城市电网发展现状与规划探讨[J];电器工业;2006年11期

3 舒印彪;1000kV交流特高压输电技术的研究与应用[J];电网技术;2005年19期

4 张运洲;对我国特高压输电规划中几个问题的探讨[J];电网技术;2005年19期

5 阮江军,夏斐,陈志楠,钟亚;近30年的工频磁场生物效应研究──没有定论[J];高电压技术;1999年02期

6 惠建峰;关志成;刘瑛岩;;各国工频电磁场的限值及其确定的依据[J];高电压技术;2006年04期

7 张广洲;张业茂;万保权;邬雄;;特高压同塔双回线路导线布置的优化[J];高电压技术;2008年09期

8 陆宠惠,万启发,谷定燮,胡毅,吴光亚;日本 1000kV 特高压输电技术[J];高电压技术;1998年02期

9 张章奎;;国内外特高压电网技术发展综述[J];华北电力技术;2006年01期

10 胡白雪,周浩;我国发展特高压交流输电的必要性和可行性[J];能源工程;2005年04期



本文编号:2467597

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2467597.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a1ef5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com