永磁无刷直流电机控制器的研究与设计
[Abstract]:The permanent magnet brushless DC motor uses electronic commutation instead of the mechanical commutation of the DC motor. It has the advantages of high operating efficiency and good speed regulation performance of the DC motor, while at the same time it has the simple structure and reliable operation of the AC motor. Maintenance convenience and a series of advantages, and rotor using permanent magnet excitation, no excitation loss. The advent and development of high performance rare earth permanent magnet materials, such as neodymium, iron and boron, has greatly promoted the production and application of permanent magnet brushless DC motors. At present, it has spread throughout aerospace, military equipment, industrial automation, medical equipment, and household appliances. Electric cars and many other fields. The permanent magnet brushless DC motor has the advantages of high operating efficiency, wide speed range, large power density and large output torque, so it is especially suitable for the drive motor of electric vehicle. Permanent magnet brushless DC motor (BLDCM), as a mechatronic motor product, is an organic whole with the supporting controller, both of which must be designed synchronously. This paper analyzes the basic structure and working principle of the permanent magnet brushless DC motor system, expounds the commutation logic control principle of the six-phase asymmetrical permanent magnet brushless DC motor, deduces and establishes its mathematical model, including voltage equation, reverse electromotive force equation, and so on. Electromagnetic torque equation and motion equation. The simulation model of six-phase asymmetrical permanent magnet brushless DC motor control system is built by using MATLAB/Simulink simulation environment, and the simulation analysis is carried out to verify the correctness of the control system. It provides a theoretical basis for studying the cause of commutation torque ripple and putting forward the suppression strategy of commutation torque ripple. The outstanding problem of permanent magnet brushless DC motor is torque ripple. Torque ripple seriously restricts the application of permanent magnet brushless DC motor in low ripple speed regulation system and high precision servo system. In this paper, the causes of commutation torque ripple are analyzed in detail, and it is concluded that during commutation period, the off-phase current drop rate is not equal to the on-off phase electric power rise rate, which causes the non-commutation current ripple, resulting in the torque ripple. Two control strategies are proposed to suppress commutation torque ripple, which are non-commutation current hysteresis control and overlapping commutation control based on pwm-on-pwm modulation, aiming at the different ripple performance of medium-low speed operation and high-speed operation. The simulation results show that the proposed commutation torque ripple suppression strategy is correct and effective. Finally, based on the above theory and simulation, a permanent magnet brushless DC motor controller based on DSPCPLD is designed. The hardware circuit design, software program design and upper computer design are introduced. After setting up the hardware system platform of the controller, some experiments have been carried out and the expected results have been achieved. The results show that the designed permanent magnet brushless DC motor controller can work normally and has good performance and the stator current waveform of the motor is better than that of the permanent magnet brushless DC motor.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM33
【相似文献】
相关期刊论文 前10条
1 袁林兴;焦振宏;杨燕;王聘;;直接面向转矩脉动的转矩补偿方法[J];微电机(伺服技术);2006年04期
2 刘向阳;刘景林;白冰洋;;稀土永磁无刷直流电动机转矩脉动研究[J];微电机(伺服技术);2006年07期
3 许镇琳;江伟;王秀芝;吴忠;;无刷直流伺服电机换向转矩脉动的分析和消除[J];电气传动;1994年05期
4 上官璇峰,王海星,焦留成;永磁无刷直流电动机的转矩脉动及其削弱方法[J];微电机(伺服技术);2001年03期
5 王瑜;桂卫华;王成立;;减小电力牵引中电机转矩脉动方法研究[J];变频器世界;2005年12期
6 沈天珉;杜川;廖家祥;邱忠才;;转矩脉动最小化的直接转矩控制系统[J];电气技术;2008年07期
7 王淑红;熊光煜;;永磁无刷直流电动机转矩脉动的减小及动态仿真[J];哈尔滨理工大学学报;2008年04期
8 江博;杨磊;张敏;;间接转矩控制的仿真研究[J];煤矿机械;2010年07期
9 赵月花;张晓涛;;电动自行车转矩脉动抑制分析与实现[J];自动化应用;2012年03期
10 夏鲲;徐鑫悦;丁晓波;朱琳玲;陈文;;永磁无刷直流电动机转矩脉动抑制方法研究综述[J];系统仿真学报;2014年07期
相关会议论文 前2条
1 侯轩;李永东;曾毅;;空间矢量PWM的转矩脉动优化[A];第11届全国电气自动化电控系统学术年会论文集[C];2002年
2 肖曦;李永东;;无刷直流电机转矩脉动抑制策略研究[A];第12届全国电气自动化与电控系统学术年会论文集[C];2004年
相关博士学位论文 前5条
1 李洋;四轮驱动电动汽车永磁同步轮毂电机驱动系统转矩控制研究[D];吉林大学;2015年
2 邱建琪;永磁无刷直流电动机转矩脉动抑制的控制策略研究[D];浙江大学;2002年
3 曾辉;开关磁阻电动机平滑转矩及无位置传感器控制研究[D];中国矿业大学;2014年
4 陈炜;永磁无刷直流电机换相转矩脉动抑制技术研究[D];天津大学;2006年
5 吴峻;交流电机的转矩控制及电动车驱动技术的研究[D];中国人民解放军国防科学技术大学;2000年
相关硕士学位论文 前10条
1 张辉;低转矩脉动的单相开关磁阻电机设计与控制[D];湖南工业大学;2015年
2 董昊;无刷直流电机抑制转矩脉动的研究[D];大连海事大学;2015年
3 李学锋;低转矩脉动开关磁阻电机控制方法[D];中国矿业大学;2015年
4 吴慎华;电动车用开关磁阻电机驱动系统的设计与优化[D];大连理工大学;2015年
5 宋志鹏;模糊逻辑控制的异步电动机直接转矩控制系统[D];太原科技大学;2014年
6 徐鑫悦;基于准Z源直流变换器的无刷直流电机换相转矩脉动抑制若干关键问题研究[D];上海理工大学;2014年
7 宋乾儒;永磁无刷直流电机控制器的研究与设计[D];东北大学;2014年
8 许嘉峰;永磁无刷直流电机控制系统的研究[D];东北大学;2014年
9 王哲;永磁无刷直流电机转矩脉动抑制方法研究[D];哈尔滨工业大学;2010年
10 蔡东升;无刷直流伺服电机辨识和转矩脉动抑制的研究[D];电子科技大学;2011年
,本文编号:2471943
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2471943.html