当前位置:主页 > 科技论文 > 电力论文 >

过渡金属氧化物电化学电容器电极材料的制备、表征及性能测试

发布时间:2019-05-20 17:09
【摘要】:随着科技与社会的不断发展,能源问题越来越受到了广泛关注。电化学电容器作为一种储能器件具有较高的功率密度,较长的循环寿命,近年来受到了较多的关注。电化学电容器可以作为电池的补充器件,克服了电池功率密度低无法短时间释放大量能量的缺点,从而进一步拓宽了电能的应用领域。根据储电机理,电化学电容器可分为双电层电容器和赝电容电容器,本文主要研究了赝电容电容器电极材料中的过渡金属氧化物电极材料的制备,表征和测试,本文中包含的主要工作包括: (1)以Ag纳米线和高锰酸钾溶液为原料,通过水热法在pH为7.00和pH为0.76的溶液中制备了不同形貌的Ag/MnOx一维纳米结构并研究结构。通过XRD,TEM,SEM,BET等表征技术,发现在中性条件下,得到的Ag/MnOx复合材料为直径在160nm左右,内径在120nm左右的一维纳米管状结构,由中空Ag纳米管和包覆于其上的非晶MnO2组成,,经测量可知,该结构的比表面积为26m2/g;在酸性环境下,得到的Ag/MnOx复合材料是由纳米片组成的直径为490nm的一维多层纳米结构,其比表面积为108m2/g。本文在三电极体系中对两种结构的材料的电化学性能进行了测试,可知一维纳米管状结构和一维多层纳米结构和在0.1A/g的电流密度下分别得到了135F/g和180F/g的电化学性能;在5A/g的电流密度下分别保持了20F/g和130F/g。在随后的循环测试中,两种材料在1A/g的电流密度下循环1000次后,均保持80%以上的初始比电容,具有较为广阔的应用前景。 (2)以Co(NO3)2,Ni(NO3)2和NH4NO3为原材料,通过电沉积法在泡沫镍上沉积了绿色(Co, Ni)氢氧化物前驱体,并通过退火处理制备了NiCo2O4纳米电极材料。本文中研究了不同沉积时间和不同沉积浓度对于NiCo2O4电极材料的形貌的影响以及电沉积过程中材料的生长机制。通过SEM和TEM表征发现在不同的沉积条件下生长在泡沫镍上的NiCo2O4电极材料由一层厚度为0.78μm-6.80μm不等的沉积层和长度为56nm-1100nm不等的纳米片组成的。通过观察相同浓度不同沉积时间的实验样品可发现,沉积层的厚度随沉积时间的延长变厚,而纳米片的长度则先增加后变短。本文通过对这些样品进行恒流密度充放电以及循环伏安测试找出了最佳的沉积条件,在该条件下得到的样品沉积层的厚度为5.36μm,纳米片长度为600-1100nm。该电极材料在1mA/cm2的充放电电流密度下比容量达到了2.34F/cm2,在15mA/cm2电流密度下比容量依然保持了1.00F/cm2。该样品在5mA/cm2的充放电电流密度下循环充放电4000次之后依然保持了70%的初始比容量,显示出了较高的循环稳定性。
[Abstract]:With the development of science and technology and society, the energy problem is getting more and more attention. As a kind of energy storage device, the electrochemical capacitor has higher power density and longer cycle life, and has received much attention in recent years. The electrochemical capacitor can be used as a supplementary device of the battery, and overcomes the defect that the battery power density is low and a large amount of energy cannot be released in a short time, so that the application field of electric energy is further widened. According to the electric storage mechanism, the electrochemical capacitor can be divided into electric double layer capacitor and pseudo-capacitor, and the preparation, characterization and test of the transition metal oxide electrode material in the electrode material of the pseudo-capacitor are mainly studied. The main work included in this paper is as follows: (1) Ag/ MnOx one-dimensional nanostructures with different morphology were prepared by hydrothermal method in a solution with a pH of 7.00 and a pH of 0.76 by using an Ag nano-wire and a potassium permanganate solution as raw materials, and the junction The Ag/ MnOx composite material obtained by XRD, TEM, SEM, BET and the like was found to be a one-dimensional nano tubular structure with a diameter of about 160 nm and an inner diameter of about 120 nm. It is known that the specific surface area of the structure is 26 m2/ g; in the acidic environment, the obtained Ag/ MnOx composite material is a one-dimensional multi-layer nano-structure with a diameter of 490 nm, which is 108 m2/ g, G. The electrochemical performance of the materials of the two structures was tested in the three-electrode system. It was found that the one-dimensional nano-tubular structure and one-dimensional multilayer nano-structure and the electrochemical performance of 135F/ g and 180F/ g were obtained at the current density of 0.1 A/ g, respectively, and 20 F/ g and 130 F/ g were maintained at the current density of 5 A/ g, respectively. g. in the subsequent cycle test, the two materials are circulated for 1000 times under the current density of 1 A/ g, the initial specific capacitance of more than 80% is maintained, and the two materials have a wide application (2) Co (NO3)2, Ni (NO3)2 and NH4NO3 are used as raw materials, and a green (Co, Ni) hydroxide precursor is deposited on the foam nickel by an electrodeposition method, and the NiCo2O4 nano-electricity is prepared by the annealing treatment. The effect of different deposition time and different deposition concentration on the morphology of NiCo2O4 electrode materials and the life of materials during electrodeposition are studied in this paper. The long-term mechanism is characterized in that the NiCo2O4 electrode material grown on the foam nickel under different deposition conditions is characterized in that the NiCo2O4 electrode material which is grown on the foam nickel under different deposition conditions is composed of a deposition layer with a thickness of 0.78 & mu; m-6.80 & mu; m and a nano sheet with a length of 56nm-1100nm The experimental samples with different deposition times at the same concentration can be found, the thickness of the deposited layer becomes thicker with the increase of the deposition time, and the length of the nanosheet is increased first The optimum deposition conditions were found by the constant current density charge and discharge of these samples and the cyclic voltammetry. The thickness of the sample deposited layer under this condition was 5.36. m u.m, and the length of the nanosheet was 600-110. The electrode material has a specific capacity of 2.34 F/ cm2 at a charge/ discharge current density of 1 mA/ cm2 and a specific capacity of 1.00F/ cm2 at a current density of 15 mA/ cm2 Cm2. The sample has been charged and discharged at a charge/ discharge current density of 5 mA/ cm2 for 4000 times, and the initial specific capacity of 70% is still maintained, showing a higher cycle.
【学位授予单位】:北京工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM53

【相似文献】

相关期刊论文 前10条

1 ;混合动力车·电化学电容器——环保·健康·安全[J];电子元件与材料;2001年05期

2 张文保;王国庆;;发展中的电化学电容器[J];电池工业;2006年01期

3 吴旭冉;贾志军;马洪运;廖斯达;王保国;;电化学应用(Ⅱ)——电化学电容器的发展与应用[J];储能科学与技术;2013年06期

4 米宏伟;朱培洋;刘剑洪;;电化学电容器电极材料的研究进展[J];材料导报;2013年13期

5 冯玉萍;于凌宇;;国际高能新电源电化学电容器技术应用动态[J];电源世界;2002年09期

6 戴贵平,刘敏,王茂章,成会明;电化学电容器中炭电极的研究及开发 I.电化学电容器[J];新型炭材料;2002年01期

7 唐致远,徐国祥;电子导电聚合物在电化学电容器中的应用[J];化工进展;2002年09期

8 张治安,邓梅根,胡永达,杨邦朝;电化学电容器的特点及应用[J];电子元件与材料;2003年11期

9 赵淑红,吴锋,苏岳锋;电化学电容器碳基电极材料研究进展[J];材料导报;2003年04期

10 张治安,杨邦朝,邓梅根,胡永达;电化学电容器的设计[J];电源技术;2004年05期

相关会议论文 前10条

1 文建国;周震涛;陈军;;电化学电容器电极材料的研究进展[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年

2 朱春野;杨裕生;曹高萍;许敏;;微晶炭的制备及其电化学电容器性能研究[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

3 王虹;唐致远;徐强;;电化学电容器电极材料的研究进展[A];第二十七届全国化学与物理电源学术年会论文集[C];2006年

4 沈裕军;沈湘黔;邓春明;翟海军;景茂祥;;电化学电容器电极材料的发展趋势[A];2002年材料科学与工程新进展(上)——2002年中国材料研讨会论文集[C];2002年

5 胡军;梁逵;李兵红;庄凯;;活性炭/氢氧化镍复合电化学电容器的研究[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年

6 樊金河;;一种贱金属电化学电容器的研制及特性分析[A];中国电子学会第十五届电子元件学术年会论文集[C];2008年

7 王宏宇;齐力;殷娇;李四横;郑程;王永勋;;中科院长春应化所在电化学电容器的研究进展[A];第十二届固态化学与无机合成学术会议论文摘要集[C];2012年

8 霍鹏飞;张淑玲;张云鹤;张兴瑞;王贵宾;;基于聚芳醚复合的电化学电容器隔膜制备与性能研究[A];2013年全国高分子学术论文报告会论文摘要集——主题L:高性能树脂[C];2013年

9 刘洪涛;李志英;何平;李景虹;朱果逸;;一种基于离子液体电解质的非对称电化学电容器[A];第十三次全国电化学会议论文摘要集(上集)[C];2005年

10 时志强;郭春雨;韩鹏献;姚国富;吕嘉辉;王成扬;;富氮炭材料用作电化学电容器电极材料[A];第二十七届全国化学与物理电源学术年会论文集[C];2006年

相关博士学位论文 前10条

1 邓梅根;电化学电容器电极材料研究[D];电子科技大学;2005年

2 王虹;金属氧化物电化学电容器电极材料的研究[D];天津大学;2009年

3 黄小文;电化学电容器及锂离子电池正极材料的研究[D];东北师范大学;2002年

4 高兆辉;电化学电容器钒基化合物负极材料的研究[D];中国矿业大学(北京);2013年

5 耿新;二氧化锰电化学电容器的研究[D];天津大学;2003年

6 周文佳;锂离子电池与电化学电容器电极材料的制备及性质研究[D];兰州大学;2008年

7 梁彦瑜;新型能源材料—电化学电容器与锂离子电池电极材料的研究[D];兰州大学;2006年

8 时志强;炭基电化学电容器电极材料的制备与电容性能研究[D];天津大学;2007年

9 徐茂文;新型锰基化合物电极材料的制备与性能研究[D];兰州大学;2008年

10 杨广武;燃料电池和电化学电容器纳米电极材料的制备与性质研究[D];兰州大学;2009年

相关硕士学位论文 前10条

1 吴全富;导电聚合物电化学电容器电极材料研究[D];新疆大学;2006年

2 明翠;聚苯胺基电化学电容器电极材料的研究[D];南京理工大学;2006年

3 邢燕;聚吡咯/杂多酸电化学电容器电极材料的制备与性能研究[D];东北师范大学;2010年

4 崔晨昊;柠檬酸凝胶法制备电化学电容器用氧化镍及其掺铜改性的研究[D];哈尔滨工业大学;2008年

5 魏双;炭基电化学电容器电极材料的电容性能及模型计算[D];吉林大学;2011年

6 张军玲;离子液体电解质在电化学电容器中的应用研究[D];新疆大学;2005年

7 陶峰;电化学电容器电极材料的制备及性能研究[D];兰州大学;2007年

8 吕嘉辉;针状焦基活性炭用作电化学电容器电极材料的研究[D];天津大学;2007年

9 刘利;化学活化中间相炭微球制备电化学电容器电极材料[D];天津大学;2009年

10 肖雄;电化学电容器用电极材料的制备及其性能研究[D];湖南大学;2010年



本文编号:2481803

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2481803.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户984e7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com