基于神经网络和预测控制的感应电机转速控制系统研究
[Abstract]:In recent years, with the development of power electronics technology, control technology and computer technology, it has become an indisputable fact to replace DC drive control system with AC drive control system, in which induction motor has been widely used in motion control. Induction motor has the characteristics of high order, coupling and nonlinear. Vector control technology is widely used in motor control system. On this basis, a new control strategy is found to have high performance. Strong disturbance rejection and strong adaptability control system is a hot research topic at home and abroad. In recent years, model predictive control technology has many advantages, such as multi-objective, multi-variable, strong constraint and so on, which can improve the tracking, stability and robustness of the control system, and has attracted extensive attention in motion control. In the basic vector control servo system, the speed controller usually adopts the traditional controller, and it is very troublesome to find the parameters to make the system achieve the best performance by constantly debugging the controller coefficients in the application and design. Under the influence of the change of motor parameters and external load disturbance, the original good control system will be greatly reduced when the coefficient is fixed after adjustment. In this way, people begin to look for new control algorithms. Intelligent control technology has strong immunity and adaptability, and the parameters can be adjusted automatically, such as neural network, fuzzy control and so on. It is of great significance to apply intelligent control technology to the control system of incoming motor. In this paper, two aspects of research have been done. On the one hand, according to the basic principle and characteristics of model predictive control technology, the advantages of model predictive control are combined with the method of rotor magnetic field orientation, and the three-phase voltage source converter and induction motor are taken as the research object of predictive control. Taking the current in static 伪 尾 coordinate system as the state variable for optimization comparison, the servo system of current prediction induction motor is designed, and the improvement of system performance is deeply studied. On the other hand, aiming at the influence of external load disturbance or moment of inertia on the performance of motor control system, a neural network adaptive PI controller is proposed and applied to the speed loop. The simulation model of the system is built and verified in Matlab/Simulink environment. The simulation results show that the neural network PI speed controller has strong adaptability when the external environment changes compared with the basic controller. The simulation results show that the neural network speed controller can maintain good control performance when the load torque and moment of inertia change.
【学位授予单位】:哈尔滨工程大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM346;TP273
【参考文献】
相关期刊论文 前10条
1 王利平;张丽;;永磁同步电动机电流预测控制[J];科学技术与工程;2013年09期
2 邹宇;向凤红;王剑平;张果;王刚;;交流电机控制策略研究进展[J];电机与控制应用;2013年03期
3 李佳;刘乾;;基于神经网络的电机可靠性控制技术研究[J];计算机光盘软件与应用;2012年18期
4 牛里;杨明;刘可述;徐殿国;;永磁同步电机电流预测控制算法[J];中国电机工程学报;2012年06期
5 王宏佳;徐殿国;杨明;;永磁同步电机改进无差拍电流预测控制[J];电工技术学报;2011年06期
6 程启明;程尹曼;王映斐;汪明媚;;交流电机控制策略的发展综述[J];电力系统保护与控制;2011年09期
7 胡斯登;赵争鸣;袁立强;鲁挺;王雪松;;高性能变频调速系统的离散控制问题研究[J];中国电机工程学报;2010年30期
8 于蓉蓉;魏学业;吴小进;覃庆努;;一种改进型预测电流控制算法[J];电工技术学报;2010年07期
9 朱昊;肖曦;李永东;;永磁同步电机转矩预测控制的磁链控制算法[J];中国电机工程学报;2010年21期
10 赵仁峰;何伟;姜朋昌;徐昕皓;段振华;;永磁交流伺服系统实验台设计与研究[J];机械设计与制造;2010年01期
相关博士学位论文 前1条
1 徐祖华;模型预测控制理论及应用研究[D];浙江大学;2004年
相关硕士学位论文 前10条
1 高丽媛;永磁同步电机的模型预测控制研究[D];浙江大学;2013年
2 张亚林;异步电机模型预测电流控制技术研究[D];华中科技大学;2012年
3 马坦;基于神经网络的交流调速系统智能算法研究[D];华中科技大学;2009年
4 黎虎;基于DSP的直线感应电机直接推力控制技术研究[D];南京航空航天大学;2009年
5 姜朋昌;永磁交流伺服系统实验台设计与研究[D];东北大学;2008年
6 张金超;基于PID神经网络的三相感应电动机调速控制系统的研究[D];东北大学;2008年
7 张明智;基于单神经元控制的异步电动机矢量控制系统[D];兰州理工大学;2008年
8 彭敏;伺服系统预测控制策略研究与设计[D];武汉理工大学;2008年
9 邓娟;基于BP神经网络的永磁同步电机自适应控制研究[D];天津大学;2007年
10 宋志强;动态递归神经网络在异步电机控制上的应用[D];西华大学;2007年
,本文编号:2483908
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2483908.html