碳纳米材料修饰电极强化微生物燃料电池产电特性与机理
[Abstract]:The problem of environment and energy has become a core problem that affects the survival and development of human beings. In recent years, the microbial fuel cell (MFC) can directly convert the chemical energy of the fuel into electric energy by using the microbial catalysis, and is a new technology which can realize the simultaneous electricity generation of the sewage purification, so that the microbial fuel cell (MFC) is widely concerned. At present, the output power density of MFC and the construction cost are too high to limit the actual application of MFC in the project With the optimization of the material of the reactor structure, the activation internal resistance of the microbial catalytic reaction from the surface of the electrode gradually becomes the key to the improvement of the MFC power; the construction cost is mainly derived from the noble metal used for catalyzing the oxygen reduction by the cathode, and the low-cost and high-efficiency chemical catalysis is found the preparation of the biological cathode by using the microorganism in place of the chemical catalyst can effectively reduce the construction of the MFC, According to the above problems, the surface modification of the anode electrode is realized by a simple method, the electron transfer rate between the microorganism and the anode electrode is improved, and the anode performance is improved; and at the cathode, the cheap and high-efficiency oxygen reduction composite catalyst is developed to replace the noble gold. Belongs to the field of Pt, or adopts a biological cathode to replace the noble metal catalyst, and the cheap and high-efficiency electrode material suitable for the biological cathode is screened, the biological cathode material is modified by a simple and high-efficiency method, the construction cost is reduced, and the MFC is improved. And provides valuable reference data and practical real-time practical application in material preparation and application to realize the large-scale practical application of the MFC. Application programme. The following main results are obtained The results are as follows: (1) The mesoporous carbon-modified carbon paper electrode, the cyclic voltammetry (CV) and the electrochemical impedance method (EIS) are prepared by layer-by-layer self-assembly method, which shows that the mesoporous carbon-modified carbon paper electrode, the cyclic voltammetry (CV) and the electrochemical impedance method (EIS) show that the mesoporous carbon-modified carbon paper electrode, the cyclic voltammetry (CV) and the electrochemical impedance method (EIS) show that the mesoporous carbon-modified carbon paper electrode, the cyclic voltammetry (CV) and the electrochemical impedance method (EIS) show that the mesoporous carbon the modified carbon paper has better stable electrochemical performance, such as increasing the reaction activation area and the electron transfer rate, The carbon paper modified with mesoporous carbon was used as the MFC of the anode to obtain 237 mW m-2 power density, which is 1.9 times (128 mW m-2) of the non-mesoporous carbon-modified carbon paper as the anode, and the starting time of the same period is also shortened by 68%, and the polarization loss of the anode and (2) in-situ synthesized manganese dioxide carbon nano-tube composite catalyst (in-situ MnO2/ CNTs'), the oxygen in the neutral buffer solution is very good, Scanning electron microscopy (SEM) showed that the MnO2 is well and uniformly modified on the surface of CNTs, and can still be attached stably after high-intensity ultrasound On the carbon paper electrode, the maximum output power density was 210 mW and the maximum output power density was 210 mW/ m2, which was equivalent to that of Pt/ C (229 mW m2), indicating that the "in-situ MnO2/ CNTs' could be used as an inexpensive and efficient oxygen reduction catalyst instead of Pt/ C." for MFC cathodes. (3) Selection of cathode materials for biological yin The current density and the maximum power density of GF-MFC were 350 mA and 109.5 mW, respectively, and higher than that of CP-MFC (210 mA m2and32.7 mW) and SSM-MFC (18 mA m2an). The corresponding MFC of the three materials obtained higher COD removal rate, and the GF-MFC was the largest. The coulomb efficiency is 11.7%. In the three materials, the graphite felt is most suitable for the two-chamber type In the cathode of MFC, CNTs-SSM (CNTs-SSM) modified by CNTs were prepared by simply and expansively. The SEM showed that CNTs were uniformly distributed on the surface of stainless steel mesh and a three-dimensional mesh junction was formed. The surface area of the structure is also improved, and the CNTs modified on the surface of the stainless steel mesh do not fall off after the high-strength ultrasonic wave, and the CNTs are explained. The combination of the stainless steel mesh is very stable. The maximum power density of the CNTs-SSM-MFC reaches 147 mW m2, which is the SSM-MFC (3 The results of the CV test show that the biofilms on the biological cathode can be used to catalyze the reduction of oxygen, and the CNTs-SSM biocathodes show the efficiency of the oxygen catalytic reduction. It is far higher than the SSM biological cathode. The SSM can adjust the fiber diameter and pore diameter during the production process, which can be the real time of the MFC. in addition, the characteristics of the easy-to-bend of the SSM can make it possible to construct the CNTs-SSM biological cathode of the corresponding structure shape according to the needs in the practical application of the MFC, such as
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:X703;TM911.45
【共引文献】
相关期刊论文 前10条
1 赵丽坤;闫蕾蕾;李景晨;吕莹莹;郝耀彤;;产电微生物与微生物燃料电池研究进展[J];安徽农业科学;2010年26期
2 孙世昌;张盼月;孙德智;肖凌鹏;马欣;;无介体微生物燃料电池型BOD传感器研究进展[J];安全与环境学报;2010年05期
3 付宁;王博;;微生物燃料电池在废水处理中的应用[J];环境科学与管理;2012年04期
4 刘佳;付玉彬;徐谦;李魁忠;赵仲凯;;Fenton试剂改性海底生物燃料电池阳极及电化学性能[J];材料开发与应用;2011年03期
5 苏佳;付玉彬;宰学荣;;海底微生物燃料电池阳极邻苯二酚紫修饰及电化学性能[J];材料开发与应用;2011年04期
6 曾丽珍;李伟善;;微生物燃料电池电极材料的研究进展[J];电池工业;2009年04期
7 次素琴;吴娜;温珍海;李景虹;;微生物燃料电池电极材料研究进展[J];电化学;2012年03期
8 王刚;黄丽萍;张翼峰;;微生物燃料电池中生物阴极的研究与应用现状[J];环境科学与技术;2008年12期
9 张亮;李俊;朱恂;廖强;付乾;王永忠;叶丁丁;;交指型阴极流场的微生物燃料电池性能[J];工程热物理学报;2010年09期
10 白中炎;仲海涛;彭晓春;吴文娜;刘仁杰;;微生物燃料电池研究进展[J];广东化工;2008年08期
相关会议论文 前5条
1 田帅;梁英梅;张盼月;张多;;Fe~(3+)作阴极电子受体的MFC型BOD传感器性能研究[A];2013中国环境科学学会学术年会论文集(第四卷)[C];2013年
2 董坤;贾伯阳;刘红;;降解纤维素产电微生物间协同作用分析[A];2013中国环境科学学会学术年会论文集(第八卷)[C];2013年
3 陈禧;王炜;彭香琴;刘宇波;幸毅明;;微生物燃料电池结构与材料研究进展[A];2013中国环境科学学会学术年会论文集(第八卷)[C];2013年
4 樊松鸽;王飞龙;冉冬琴;陈守文;;氧化锰修饰空气阴极对双室MFC产电性能的影响[A];第一届氢能关键材料与应用研讨会论文集[C];2013年
5 钟茜;许峗溢;杨冰雪;;用于废水处理及产能的微生物燃料电池研究进展[A];2014中国环境科学学会学术年会论文集(第五章)[C];2014年
相关博士学位论文 前10条
1 许科伟;污泥厌氧消化过程中乙酸累积的微生态机理研究[D];江南大学;2010年
2 孙健;微生物燃料电池同步降解偶氮染料和产电的特性与机理[D];华南理工大学;2010年
3 莫光权;功能化碳纳米管材料在微生物燃料电池中的应用研究[D];华南理工大学;2010年
4 王凯鹏;电子中介体固定化及其在微生物燃料电池阳极的应用[D];武汉大学;2010年
5 李贺;折流板管状空气阴极微生物燃料电池构建及产电特性研究[D];哈尔滨工业大学;2011年
6 张培远;微生物燃料电池能量特性研究[D];北京工业大学;2011年
7 刘洪英;分子超光谱成像的生物组织定量检测与方法研究[D];华东师范大学;2011年
8 李中坚;基于微生物电化学系统的废水处理技术研究[D];浙江大学;2012年
9 杨永刚;微生物燃料电池的电子传递方式及其在典型有机污染物降解中的应用研究[D];华南理工大学;2011年
10 侯彬;同步脱色刚果红与产电的微生物燃料电池的性能和机理研究[D];华南理工大学;2012年
相关硕士学位论文 前10条
1 孙茜;微生物燃料电池处理难降解有毒废水实验研究[D];哈尔滨工程大学;2010年
2 李建海;海底沉积物微生物燃料电池阳极表面改性及电极构型研究[D];中国海洋大学;2010年
3 周宁波;纳米二氧化铈制备、表征及修饰微生物燃料电池阳极的研究[D];华东理工大学;2011年
4 甘琳琳;微生物燃料电池的PCP共代谢降解动力学[D];大连理工大学;2011年
5 迟美玲;提高微生物燃料电池性能的电极材料研究[D];南开大学;2011年
6 孙世昌;双室无介体型微生物燃料电池在BOD传感器中的研究初探[D];北京林业大学;2011年
7 周玲;盐桥连接下微生物燃料电池阳极材料及其应用的研究[D];广东工业大学;2011年
8 彭艳丽;生物酶/LDH插层及应用研究[D];山东轻工业学院;2011年
9 赵世辉;双室型微生物燃料电池在制浆废水处理中的应用研究[D];华南理工大学;2011年
10 武晨;微生物燃料电池处理苯胺废水的产电特性研究[D];天津理工大学;2011年
本文编号:2485106
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2485106.html