并联电池模块的热电特性实验研究
[Abstract]:Because of its high efficiency and low emission, the electric vehicle with lithium ion battery as the power source is expected to replace the internal combustion engine vehicle with fossil fuel as energy source. The popularity of electric vehicles will effectively solve major social problems such as global warming and air pollution. As the core component of electric vehicle, one of the key problems of lithium-ion battery is aging and its accompanying power and energy density reduction. It has been shown that temperature and charge state (SOC), charge and discharge rate are the main factors affecting the aging process of lithium ion batteries. In electric vehicles, lithium-ion batteries are used in groups. Because of the inconsistency between batteries and the different positions of each battery, different batteries bear different loads and thermal environment, which is bound to make the aging of different batteries inconsistent. In this paper, the effects of battery inconsistency and thermal effect on the uneven current distribution are studied. A parallel experimental module of two batteries is designed to explore the changes of current distribution under different operating conditions (charge-discharge rate, temperature, etc.). First of all, the importance of the influence of battery internal resistance on the current distribution of parallel batteries is investigated. Five different methods are proposed and compared. Secondly, different load, temperature and other working conditions will also have different effects on the battery pack, and the experimental results also explore the difference of current distribution of parallel battery pack under different thermal boundary conditions and internal resistance. In this study, the effects of these factors on the current distribution of parallel batteries were investigated by investigating the internal resistance of single cell, the difference of initial open circuit voltage and thermal boundary conditions. Firstly, the internal resistance of the single cell was studied and measured. Because the internal resistance plays an important role in the current distribution of parallel batteries, five different internal resistance measurement methods are applied and compared in this study. Secondly, the loading current and ambient temperature of the battery pack are changed, and the internal resistance of the single cell is investigated, and the effects of the time needed to achieve SOC equilibrium and the thermal boundary conditions on the battery pack are investigated. It is found that the current distribution of parallel battery pack is affected by three main factors: (1) the resistance difference of each branch in parallel circuit, including the internal resistance and contact resistance of single cell; (2) the difference of open circuit voltage (OCV) of single cell depends on its SOC and temperature and (3) the temperature difference of single cell itself due to the different position in the battery pack. In order to minimize the current distribution and SOC difference of parallel battery pack, we investigated the following factors: 1) connecting conductor resistance: replacing copper wire with silver wire of the same length, The difference between SOC and current distribution in the charge and discharge process of battery pack is reduced. 2) the difference of initial open-circuit voltage between single cell: after each charge-discharge cycle, the static time increases for 13 hours, and the difference between current and SOC distribution in the next charge-discharge cycle decreases; 3) by improving the consistency of the thermal environment of the battery pack, the huge difference of current distribution caused by the different encapsulation conditions of the battery pack can be eliminated. We expect that the conclusions here will also apply to modules with more batteries.
【学位授予单位】:清华大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM912
【相似文献】
相关期刊论文 前10条
1 祁娜;姚舜;;单体电池电压采集系统设计与实现[J];鱼雷技术;2008年02期
2 杨固长;崔益秀;周建银;;锂离子单体电池筛选方法的研究[J];电池工业;2009年03期
3 王宏伟;肖海清;王超;邓爽;杨宗辉;;笔记本电脑用单体电池的安全问题[J];电池工业;2011年01期
4 吴憩棠;;通用在中国启动单体电池样品研制与测试 访通用中国科学研究院院长杜江凌博士[J];汽车与配件;2012年41期
5 魏如海;陈丹;;浅析单体电池在线活化技术在大发水电站的应用[J];科技创业家;2012年15期
6 任洪;铅酸牵引蓄电池 第二部分:单体电池和端子的尺寸及单体电池的极性标志[J];蓄电池;1986年02期
7 冯建君;郭际;王兴贺;段保京;;锂-二氧化锰单体电池筛选方法的研究[J];电源技术;2014年07期
8 ;从动力蓄电池单体电池到汽车电子设备 艾德克斯提供完善测试方案[J];汽车与配件;2013年23期
9 王晓梅;潜艇蓄电池——先进的单体电池设计[J];船电技术;1994年02期
10 于志豪;常龙;张瑞雪;肖林京;刘韬;;锂电池动力电源单体电池电压检测系统设计[J];电源技术;2014年05期
相关会议论文 前1条
1 沈丹;魏学哲;孙泽昌;;燃料电池系统单体电池电压监测方案的设计[A];2007年APC联合学术年会论文集[C];2007年
相关重要报纸文章 前3条
1 记者 颜新华;国网成功研制大容量钠硫储能单体电池[N];中国电力报;2009年
2 本报见习记者 吕彩霞;北京相关人士解析 电动公交车电池衰减现象[N];中国汽车报;2005年
3 何仑 《国际商报·汽车周刊》主编;“换电模式”与让炸弹飞[N];国际商报;2011年
相关硕士学位论文 前10条
1 周耀华;电动汽车电池冷却系统的数值模拟研究[D];华南理工大学;2015年
2 郭巧嫣;车用动力电池多内热源生热模型和电热不一致性研究[D];华南理工大学;2015年
3 赵英杰;单体电池化成设备的研究[D];北京交通大学;2011年
4 祁华铭;纯电动汽车能量均衡技术研究[D];合肥工业大学;2015年
5 梅林;并联电池模块的热电特性实验研究[D];清华大学;2014年
6 林思岐;电池均衡电路的研究及应用[D];北京交通大学;2013年
7 牛萌;混合动力车用电池均衡方案研究[D];北京交通大学;2010年
8 夏小东;带有升降压变换器的飞渡电容式电池组均衡技术研究[D];哈尔滨工业大学;2011年
9 雷晶晶;动力锂离子电池组管理系统的研究[D];湖南大学;2011年
10 白栋材;电池化成分容系统上位机软件开发的设计与实现[D];武汉理工大学;2012年
,本文编号:2486008
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2486008.html