当前位置:主页 > 科技论文 > 电力论文 >

基于智能用电系统的家庭用电策略研究

发布时间:2019-06-05 14:52
【摘要】:近年来,关于高级量测体系智能用电技术的研究大都集中在系统的终端设备、通信技术及其基本功能方面,对基本功能数据应用的研究相对较少。因此如何使用户根据电网公司的价格信息及自身能源结构,更加经济合理的用电已成为智能用电技术发展的趋势。 本文目的是研究设计一种基于智能用电系统的家庭用电策略,通过该策略能够合理的调整家庭用电设备工况,,使用户达到用电质量最高、节省电费开支的目标。文章首先根据目前高级量测体系研究情况设计了家庭智能用电系统架构,并分别介绍系统的主站、户内网络、本地信息管理终端以及相应的通信技术。然后从家庭用电规划和家庭能量管理两部分开展家庭用电策略的研究,家庭用电规划为家庭能量管理提供参与规划的用电设备电能消耗数据。 家庭用电规划的研究是结合用户的用电习惯与电网公司分时电价信息,以用电设备的启动时间为决策变量,以家庭的电费支出最少为规划为目标,建立家庭用电规划模型。家庭能量管理模型的建立是针对采用市电电网与光伏并网发电联合供电的新型家庭,把家庭的能耗节点分成调节室内温度能耗、热水加热能耗、蓄电池储能以及其他用电设备能耗,以室内温度调节功率、热水系统的加热开关、蓄电池充放电功率为控制量,跟踪室内温度与热水温度需求,以室温、热水服务质量最高和节省电费支出为目标。 文章对家庭用电规划模型和家庭能量管理模型分别设计基于遗传算法的优化方法,并分析了求解家庭能量管理模型控制变量的约束条件,给出了相应的调整方法。为了验证遗传算法在求解家庭用电模型的有效性,对算法进行了仿真实验,经仿真得到该方法能够有效的节省用户的电费支出。
[Abstract]:In recent years, most of the research on intelligent power consumption technology of advanced measurement system has focused on the terminal equipment of the system, communication technology and its basic functions, but the research on the application of basic functional data is relatively small. Therefore, how to make users use electricity more economically and reasonably according to the price information of power grid companies and their own energy structure has become the development trend of intelligent power technology. The purpose of this paper is to study and design a household power consumption strategy based on intelligent power consumption system. Through this strategy, the working conditions of household electrical equipment can be reasonably adjusted, so that users can achieve the goal of the highest quality of electricity consumption and saving electricity expenditure. Firstly, according to the research situation of advanced measurement system, the architecture of home intelligent power consumption system is designed, and the main station, indoor network, local information management terminal and corresponding communication technology of the system are introduced respectively. Then the household power consumption strategy is studied from the two parts of household power planning and family energy management. Household power planning provides household energy management with the data of power consumption of electrical equipment involved in the planning. The research of household electricity planning is to establish a household electricity planning model based on the user's electricity habit and the time-sharing electricity price information of the power grid company, taking the start-up time of the electrical equipment as the decision variable and the minimum household electricity expenditure as the goal. The establishment of household energy management model is aimed at a new type of household which adopts the combined power supply of municipal power grid and photovoltaic grid-connected power generation. The household energy consumption nodes are divided into indoor temperature energy consumption and hot water heating energy consumption. Battery energy storage and other electrical equipment energy consumption, indoor temperature regulation power, hot water system heating switch, battery charge and discharge power as the control, tracking indoor temperature and hot water temperature requirements, at room temperature, Hot water service quality is the highest and electricity expenditure is saved as the goal. In this paper, the optimization methods based on genetic algorithm are designed for household power planning model and family energy management model, and the constraint conditions for solving the control variables of family energy management model are analyzed, and the corresponding adjustment methods are given. In order to verify the effectiveness of genetic algorithm in solving household power consumption model, the simulation experiments are carried out, and the simulation results show that this method can effectively save the electricity cost of users.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TM76

【共引文献】

相关期刊论文 前10条

1 李莉;基于混合遗传算法的钻孔最佳走刀路线的求解[J];排灌机械;2001年06期

2 唐平,李金伴,张荣标;基于遗传算法的泵汽蚀试验数据拟合[J];排灌机械;2002年01期

3 闫永强,梁武科;遗传算法在离心泵叶片优化设计中的应用[J];排灌机械;2004年02期

4 张滨燕;郝艳莉;;退火遗传算法及其在一维切割问题上的应用[J];新乡学院学报(自然科学版);2009年02期

5 徐海;王娜娜;;基于卡尔曼滤波器的机动目标跟踪仿真[J];新乡学院学报(自然科学版);2010年01期

6 李小玲;标准遗传算法的应用初探[J];攀枝花学院学报;2004年01期

7 危志明;陈琪;;基于遗传神经网络的图书馆流通量预测[J];情报探索;2009年10期

8 蒋定定,王贵霞;基于遗传算法的红外图像增强研究[J];情报指挥控制系统与仿真技术;2004年04期

9 赵师;屈洋;刘洪坤;;基于串联QFD神经网络的武器装备使用需求映射方法[J];指挥控制与仿真;2009年05期

10 李文涛;姜海波;王雪琴;;数字化炮兵作战能力评价[J];指挥控制与仿真;2010年03期

相关会议论文 前10条

1 齐继阳;竺长安;曾议;;基于遗传禁忌混合搜索算法的设备布局研究[A];2004“安徽制造业发展”博士科技论坛论文集[C];2004年

2 齐文文;赵斌;龙连春;;基于遗传算法的加筋圆柱壳屈曲承载力优化[A];北京力学会第18届学术年会论文集[C];2012年

3 丁婷;崔红涛;;遗传算法在智能天线扇区波束赋形及阵元失效补偿中的应用[A];经济策论(上)[C];2011年

4 程远林;李茂军;;基于小生境遗传算法的配电网电容器优化配置[A];第二十六届中国控制会议论文集[C];2007年

5 姜明辉;袁绪川;;基于GA优化的个人信用评估SVM模型[A];第二十六届中国控制会议论文集[C];2007年

6 张志华;王莉;刘洪;;最大化网络广告收入的投放决策[A];第二十六届中国控制会议论文集[C];2007年

7 赵瑞艳;李树荣;张晓东;苗荣;;基于混合遗传算法的热传导系统最优控制问题求解[A];第二十七届中国控制会议论文集[C];2008年

8 王清;宋年年;王佳庆;姚菁;;优化自抗扰控制器在主汽温控制系统中的应用[A];第二十七届中国控制会议论文集[C];2008年

9 康忠健;徐丽;勾松波;金华蓉;李瑞生;;考虑分布电容的神经网络单相接地故障测距算法[A];第二十七届中国控制会议论文集[C];2008年

10 姜封国;;基于小生境技术的混合遗传算法[A];第二十九届中国控制会议论文集[C];2010年



本文编号:2493607

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2493607.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9a199***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com