无铅铁电陶瓷的晶格振动及电子跃迁特性研究
[Abstract]:The lead-free ferroelectric ceramic material is one of the hot spots of the present ferroelectric ceramic material due to its excellent ferroelectric property and the friendliness of the environment. At present, the research of lead-free ferroelectric materials is mainly focused on:1) Perovskite-type titanate-based ferroelectric materials, such as titanium, BaTiO3 (BT), SrTiO3 (ST) of titanium, Sr1-x (BST), and the like. Such as, for example, a lithium titanate Bi4Ti3O12, a ferroic acid, or a SrBi2Nb209 (SBNO), and the like. wherein the BST, the SBN and the SBNO and the doped ferroelectric material thereof have the characteristics of higher resistivity, good anti-fatigue property, high dielectric constant and the like, And has a great application prospect in the fields of non-refrigeration infrared focal plane arrays and ferroelectric storage. The preparation, performance and modification of lead-free ferroelectric ceramics have become a hot spot of the ferroelectric ceramic material. The ideal operating temperature range of the pyroelectric detector should be in the vicinity of the Curie temperature (Tc) of the pyroelectric material according to the analysis of the working principle of the ferroelectric material for the pyroelectric detector. Therefore, the phase-change temperature point of the ferroelectric material is reduced as a necessary condition for the development of the next generation pyroelectric detector. In this paper, the synthesis of lead-free ferroelectric oxide and its rare-earth element-doped ferroelectric materials, such as Ba0. 4Sr0.6-xMnxTiO3 (BSMT), SrxBa1-xNb2O6 (SBN) and SrBi2Nb2-xNdxO9 (SBN), are studied by means of spectral measurement. The main work and innovation points of this paper include the following: 1. Raman spectrum, far infrared spectrum and elliptically polarized light in the temperature range of 80-873 K of ferroelectric ceramic SBN with layered structure are studied. The electron structure, the optical phonon mode and the curie temperature of the doping of the element Nd in detail are discussed in detail. In response, the research on SrBi2Nb2-xNdxO9 (0-x-0.20) prepared by the conventional solid-state sintering reaction shows that (a) the frequency of the A1g[Nb] acoustic submode produced by the Nb06 oxygen octahedron is reduced with the increase of the Nd component as the temperature increases with the increase of the Nd component, In addition, the peak position of the A1g[Nb] acoustic submode and its intensity show no difference in the ferroelectric phase of the SBN to the phase transition temperature of the paramagnetic phase. and (b) fitting the far infrared reflection spectrum of the SBN in the range of 350-1500 cm-1 by a Lorentz oscillator model, Submode. The Nb06 tilt and symmetric draw mode as the Nd component increases due to the lattice distortion due to the increase in the Nd component and the change behavior of the phonon mode of the raman activity is The high-frequency dielectric constant obtained by fitting is between 4.55 and 4.80, and the far-infrared dielectric function of the Nd component is shown. (c) The two band transition energies of SBN (the transition energy of 3.70 and 4.78 eV at 0 掳 and 3.70 and 4.78 eV at 0 掳, respectively) and the corresponding energy range were obtained by using the Taurc-Lorenz dispersion model to obtain the elliptical polarization spectrum at the temperature of 0 掳 to 500 掳. An electrical function. When a phase change temperature near the ferroelectric to a paraelectric, there is an anomaly in the transition energy between the two bands as the temperature increases. The change of the band-to-band transition is due to the hybridization of the Bi6s and the O2p orbitals during the lattice distortion. Finally, we found that, after the introduction of Nd ions in the Bi202 layer, we obtained the inclination angle of the Nb06 oxygen octahedron from the bond angle of Nb-O1-Nb, and the degree of distortion of the Nb06 oxygen octahedron was reduced from 9.7 掳 to 5.5 掳, and finally the Curie temperature of the SBN was reduced with the Nd component. increases from 710 to 5 50 K. This provides a family for research and development of the next generation of pyroelectric infrared detector materials The optical constants and the forbidden band width of the perovskite type ferroelectric ceramic BSMT in the range of ultraviolet to far infrared photon energy are studied, and the doping of Mn to the infrared and Raman phonon modes and the electron are discussed in detail. The results of the study on the structure of Bao. 4Sr0.6-xMnxTiO3 (0.01% x {0.10) prepared by the traditional solid-state sintering reaction show that, in the range of 1% to 10% of the Mn doping range, the BSMT is a single perovskite phase and does not (b) the frequency of the acoustic submode A1 (LO3)/ E (LO) of the Raman activity due to the distortion of the Ti06 oxygen octahedron with the increase of the Mn component Blue shift of 8 cm-1. The frequency of the T04 acoustic submode of the infrared activity is reduced from 532 to 520 cm-1. (c) in the range of 1.0 to 3.0 eV, the dielectric function of BSMT is 2 with the Mn group. the increase in the fraction increases. the optical forbidden band width (e) is between 3.40 and 3.65 ev, and it is found that the eg decreases with the increase of the mn component, it is noted that after the mn is increased to 10%, both the bv2 and the eg are An abnormal change. The study is a potential application of the BSMT ferroelectric ceramics to a new type of photoelectric multi-function device The low-frequency phonon modes of the Raman and infrared activity of the tungsten-bronze ferroelectric ceramic SBN are studied in this paper. With the change of the Sr component and the temperature, the soft-mode of the SBN is observed to disappear in the vicinity of the phase-change point, and the Curie temperature of the SBN is obtained. The relationship of the degree with the composition is discussed. SrxBa1-xNb206 (0.30-x-0.50) ferroelectric is investigated by means of temperature-varying Raman scattering and Fourier infrared spectroscopy. The abnormal lattice vibration characteristics of the ceramic. a) the frequency of the infrared active T2u. The frequency of the phonon mode increases with the increase of the Sr component And the red shift is about 2 cm-1. The reason is that the larger Ba is off. and (b) the frequency of the Alg acoustic submode is shifted to the low frequency direction as the temperature is increased, and the intensity is obviously In the vicinity of the Curie temperature point, the frequency of the A1g acoustic submode and the half-height width change with the temperature There was an abnormal change in the slope of the chemical. The SBN ceramic The soft modulus is about 42 cm-1. With the increase of the temperature, the frequency of the soft die is The relationship between the Curie temperature and the Sr component of SBN is obtained based on the change of temperature.
【学位授予单位】:华东师范大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM221
【相似文献】
相关期刊论文 前10条
1 钱蓉,张颖,黄郁仲;PZT 铁电陶瓷细观结构及其力学行为分析[J];西南交通大学学报(自然科学版);1998年01期
2 李长鹏,王矜奉,王勇军,陈洪存;掺杂的PNL-PFS-PZT铁电陶瓷性能研究[J];电子元件与材料;2000年06期
3 贺元吉,张亚洲,李传胪;爆电换能的理论分析[J];国防科技大学学报;2000年S1期
4 乔利杰;;铁电陶瓷在力-电和化学环境中的耦合效应[J];功能材料信息;2007年05期
5 邓国强;铁电陶瓷电容器的老化常数确定及使用[J];电子元件与材料;1992年05期
6 袁战恒,姚熹;铁电陶瓷的有效介电系数及其调整原理[J];西安交通大学学报;1992年05期
7 吴清仁,奚同庚,文梓芸;新铁电陶瓷材料PZT热物理性能和相变的研究(英文)[J];华南理工大学学报(自然科学版);2000年12期
8 申林,肖定全,余萍,朱建国,高道江;(Bi_(4-x),La_x)Ti_3O_(12)铁电陶瓷性能研究[J];压电与声光;2002年03期
9 云斯宁,王晓莉;改进的两步法制备PZN-PT-BT铁电陶瓷[J];功能材料;2005年05期
10 凌志远,,刘付德,熊茂仁,陈楷;铁电陶瓷的极化运动学模型[J];电子学报;1998年02期
相关会议论文 前10条
1 李法新;;铁电陶瓷变形与断裂实验研究的最新进展[A];中国科协第235次青年科学家论坛——极端复杂测试环境下实验力学的挑战与应对[C];2011年
2 左如忠;桂治轮;李龙土;;铁电陶瓷和银钯浆料的多层共烧动力学及调控机理[A];2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C];2000年
3 崔元庆;仲政;;铁电陶瓷中近矫顽电场驱动的静止裂纹附近的大范围畴变[A];第十五届全国疲劳与断裂学术会议摘要及论文集[C];2010年
4 姚学锋;张振科;邹林华;金观昌;;铁电陶瓷材料损伤与断裂机理的实验研究[A];复合材料的现状与发展——第十一届全国复合材料学术会议论文集[C];2000年
5 魏晓勇;姚熹;;BaTiO_3基微波介质陶瓷介电性能研究[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
6 郑阳;李志成;刘路;徐永波;;(BaPb)TiO_3铁电陶瓷的电疲劳现象[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
7 赵坚强;李龙土;桂治轮;;外加直流电场下Ba_(1-x)Sr_xTiO_3铁电陶瓷介电性能研究[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年
8 王茂祥;孙彤;孙平;;(Pb_(1-x)Sr_x)TiO_3系铁电陶瓷的介电温谱与频谱特性[A];华东三省一市第三届真空学术交流会论文集[C];2000年
9 孙平;孙彤;;铁电陶瓷晶粒织构化技术[A];华东三省一市第三届真空学术交流会论文集[C];2000年
10 张颖;程璇;钱蓉;;PZT铁电陶瓷机电耦合疲劳行为[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
相关重要报纸文章 前1条
1 孔明;从球面到平面[N];中国计算机报;2000年
相关博士学位论文 前10条
1 姜凯;无铅铁电陶瓷的晶格振动及电子跃迁特性研究[D];华东师范大学;2014年
2 朱廷;铁电陶瓷的电致失效力学[D];清华大学;1999年
3 贺元吉;爆电能源高功率超宽带脉冲发生器研究[D];国防科学技术大学;2001年
4 高峰;高介弛豫铁电陶瓷/NiZn铁氧体叠层低温共烧行为的研究[D];西北工业大学;2002年
5 黄平;锶铋钛铁电陶瓷及薄膜的研究[D];天津大学;2005年
6 严文裔;相变材料的细观本构研究与相变局部化分析[D];清华大学;1995年
7 张飒;PLZT铁电陶瓷畴变的原位Raman光谱观测[D];厦门大学;2006年
8 陈志武;电疲劳过程中PLZT铁电陶瓷畴变的原位观测及电疲劳机理研究[D];厦门大学;2003年
9 吴甲民;低介微波介质陶瓷及BST基铁电陶瓷的凝胶注模制备技术及其性能研究[D];华中科技大学;2012年
10 张艳飞;多晶材料铁电热电性质的蒙特卡罗模拟[D];山东大学;2009年
相关硕士学位论文 前10条
1 钱娟娟;硼族元素掺杂对无铅铁电陶瓷介电性能的影响[D];上海师范大学;2010年
2 那文菊;高介BaTiO_3基铁电陶瓷性能研究[D];西华大学;2011年
3 郑晓斌;钛酸锶钡钙基铁电陶瓷的介电性能研究[D];天津大学;2011年
4 王智珠;多孔铁电陶瓷PZT95/5冲击应力作用下的去极化与放电响应研究[D];兰州大学;2013年
5 高龙;多孔PZT95/5铁电陶瓷的制备及低速冲击载荷下的放电特性研究[D];西南科技大学;2013年
6 潘玲;钛酸铋粉体溶胶-凝胶合成及陶瓷的超高压制备[D];吉林大学;2005年
7 石秀丽;磁通量压缩发生器关键技术研究[D];南京理工大学;2011年
8 余柏威;钡基铋层状铁电陶瓷钛酸铋钡和铌酸铋钡的掺杂改性与老化研究[D];上海师范大学;2013年
9 张攀;冲击波加载下PZT95/5铁电陶瓷的力学及电学特性数值研究[D];兰州大学;2013年
10 张丰庆;Ca_xSr_(1-x)Bi_4Ti_4O_(15)铁电陶瓷及薄膜的制备及性能研究[D];山东建筑大学;2007年
本文编号:2495964
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2495964.html