基于灰色关联分析和最小二乘支持向量机的光伏功率预测算法的研究
[Abstract]:With the increasing severity of the global energy crisis and environmental pollution, the development and utilization of new and renewable energy has become the main method to solve the energy problem in the world, and photovoltaic power generation system has been developed rapidly. However, due to the influence of meteorological factors, the power generation power of photovoltaic grid-connected power generation system is intermittent and fluctuating, in order to reduce its impact on the power grid and ensure the stability of the power grid. It is necessary to predict the power generation power of photovoltaic system accurately. On the basis of reading a large number of domestic and foreign literature, this paper studies the power generation power prediction of photovoltaic grid-connected from two different aspects. By analyzing the related factors and data mining technology that affect the power of photovoltaic grid-connected power generation, the data sequences with similar meteorological characteristics to the predicted period are selected from a large number of data, and the grey relational analysis theory is used to predict the power of photovoltaic power generation. The main influencing factors of irradiance, temperature and humidity are selected as the input variables of the least square support vector machine prediction model, and the output power of photovoltaic system is predicted 24 hours in advance. The advantages and disadvantages of grey relational analysis method and least square support vector machine method are deeply analyzed, and the characteristics of photovoltaic power generation system are combined with the characteristics of photovoltaic power generation system. The prediction methods of parallel grey correlation least square support vector machine and series grey correlation least square support vector machine are proposed. In this paper, through the photovoltaic grid-connected power generation monitoring system of Tianjin University, the relevant data of photovoltaic grid-connected power generation are obtained, and four prediction models are established by season to predict sunny, cloudy, rainy and haze days, respectively. The experimental results show that the prediction accuracy of serial and parallel grey correlation least squares support vector machine prediction method is higher than that of single grey correlation analysis method and least square support vector machine method. Among them, the output value of series grey correlation least square support vector machine model is the closest to the actual value of the output power of photovoltaic system.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP18;TM615
【参考文献】
相关期刊论文 前10条
1 王晓兰;葛鹏江;;基于相似日和径向基函数神经网络的光伏阵列输出功率预测[J];电力自动化设备;2013年01期
2 单联宏;;基于改进灰色斜率关联度的评价研究[J];数学的实践与认识;2012年22期
3 傅美平;马红伟;毛建容;;基于相似日和最小二乘支持向量机的光伏发电短期预测[J];电力系统保护与控制;2012年16期
4 姜侨娜;陈中;;BP-马尔科夫组合预测方法在光伏发电量预测中的应用[J];电力需求侧管理;2011年06期
5 陈昌松;段善旭;蔡涛;代倩;;基于模糊识别的光伏发电短期预测系统[J];电工技术学报;2011年07期
6 朱永强;田军;;最小二乘支持向量机在光伏功率预测中的应用[J];电网技术;2011年07期
7 丁明;徐宁舟;;基于马尔可夫链的光伏发电系统输出功率短期预测方法[J];电网技术;2011年01期
8 张宁;许承权;薛小铃;郑宗华;;基于最小二乘支持向量机的短期负荷预测模型[J];现代电子技术;2010年18期
9 陈昌松;段善旭;殷进军;;基于神经网络的光伏阵列发电预测模型的设计[J];电工技术学报;2009年09期
10 栗然;李广敏;;基于支持向量机回归的光伏发电出力预测[J];中国电力;2008年02期
相关博士学位论文 前2条
1 王飞;并网型光伏电站发电功率预测方法与系统[D];华北电力大学;2013年
2 陈昌松;光伏微网的发电预测与能量管理技术研究[D];华中科技大学;2011年
相关硕士学位论文 前9条
1 赵欣宇;光伏发电系统功率预测的研究与实现[D];华北电力大学;2012年
2 仇斌;小功率交流独立光伏发电系统的研究[D];南京航空航天大学;2012年
3 刘俊华;电力变压器灰色关联故障诊断模型的组合权重法[D];湖南大学;2011年
4 田军;分布式发电系统储能优化配置[D];华北电力大学(北京);2011年
5 蒋亚娟;光伏电池建模及其在光伏发电预测中的应用[D];华中科技大学;2011年
6 杨立成;基于最小二乘支持向量机的短期电力负荷预测方法研究[D];广西大学;2008年
7 孙玉刚;灰色关联分析及其应用的研究[D];南京航空航天大学;2007年
8 曹明霞;灰色关联分析模型及其应用的研究[D];南京航空航天大学;2007年
9 陈秋妹;数据光滑度改进与灰色关联研究[D];浙江工商大学;2006年
,本文编号:2496640
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2496640.html