当前位置:主页 > 科技论文 > 电力论文 >

新型聚合物电解质基复合质子传输膜的制备及其性能研究

发布时间:2019-07-06 18:16
【摘要】:质子交换膜(PEM)作为质子交换膜燃料电池(PEMFC)的核心部件在很大程度上决定了PEMFC性能的好坏。现在广泛应用于PEMFC的PEM是杜邦公司生产的Nafion膜。虽然Nafion膜具有高质子传导、化学稳定性好等优点,但它的质子传导强烈依赖膜内的水含量,高温时膜性能急剧下降,在作为直接甲醇燃料电池(DMFC)的PEM时燃料渗透严重,并且Nafion的生产过程复杂,造价昂贵。这些问题都是影响Nafion广泛应用的重要原因。磺化的芳香族聚电解质由于具有良好的机械性能,化学稳定性和热稳定性,尤其是低于Nafion的甲醇渗透和生产成本,,使其在近年的PEM研究中备受科研和能源开发机构的青睐。我们知道,在PEM中质子的传导主要是在膜的亲水区域内,亲水区的连续性越好越有利于质子传导。在磺化的无规共聚物膜中,磺酸基会聚集形成大的离子簇,亲水区之间的相对间距很大,因此质子不能在这种结构中快速的传导。为了获得综合性能好,并且具有连续质子传输通道的PEM,很多方法被用于制备改性PEM。 在本论文中,我们以磺化芳香聚电解质作为基体,用不同的方法构筑了一系列综合性能好,具有连续离子簇网络和长程质子传输通道的复合质子交换膜材料。具体工作分为四个部分: 在第一部分工作中,我们利用原位聚合的方法将具有大量酰胺键的聚异丙基丙烯酰胺(PNIPAm)引入到无规共聚合SPI基体中,制备了一系列具有不同PNIPAm含量的SPI-cPNIPAm半互穿网络PEM。PNIPAm中的酰胺键与SPI中的磺酸基之间形成的氢键相作用以及半互穿的三维网络结构能够调节复合膜的微观结构和性能。当磺酸基和酰胺键摩尔比为1:1时,SPI-20%-cPNIPAm膜样品中离子簇尺寸最小,分布均匀且连续,形成了利于质子传导的通道。25oC时,该样品膜的质子传导是纯SPI膜的2倍,电池能量密度由纯膜的44mW cm2提高到72mW cm2。同时复合膜也具有良好的机械性能和热稳定性。 在第二部分工作中,我们从不同尺寸石墨出发,制备了三种具有不同尺寸的氧化石墨烯(GO)。将不同尺寸的GO与SPI复合,用于考察GO的尺寸效应对SPI/GO复合膜微观结构和性能的影响。研究发现,在相同的含量下,尺寸最小的GO对SPI基体的微观结构和性能影响最大。在最小GO掺杂为0.5wt%的PEM中离子簇从纯SPI膜中的25nm缩小到6nm,分布均匀且连续,形成了有利于质子传导的微观结构。同时25oC下,这个样品膜的质子传导高于纯SPI膜4倍。复合膜的机械性能、抗氧化稳定性、尺寸稳定性和阻醇性能也都有不同程度上的提高。实验结果说明,GO的引入能够调节PEM的微观结构,优化PEM的综合性能。 在第三部分工作中,我们通过8-羟基喹啉-5-磺酸盐中的羟基与3-异氰酸酯基丙基三乙氧基硅烷中的异氰酸酯的反应,得到了含有氮杂环和磺酸基的有机硅氧烷偶联剂(SiSQ)。在表面活性剂(模板剂)的存在下,采用溶胶-凝胶的方法将SiSQ引入到SPI基体中,得到了一系列含有不同介孔有硅氧烷(MsiSQ)掺杂量的SPI-MSiSQ复合膜。研究发现MSiSQ相与SPI基体之间有更好的相容性,磺酸基的引入减少了掺杂组分对SPI膜中磺酸基浓度的稀释作用。复合膜的质子传导和阻醇性随着MSiSQ含量的增加而增加。当MSiSQ含量为40wt%时,在25oC下,复合膜的质子传导为0.23S cm-1,甲醇渗为1.8×10-8cm2/S,选择性为12.8×106Sscm-3,这与纯膜相比分别提高了3、6、23倍。这主要归因于:一方面是MSiSQ中的喹啉氮原子与SPI中的磺酸基之间的相互作用促使SPI中的大尺寸离子簇分散成尺寸更小的离子簇,在膜中形成了均一连续的质子传输通道;另一方面则是磺化有机硅氧烷中的磺酸基与表面活性剂作用,去除表面活性剂后磺酸基聚集在介孔内,为质子的传导提供了长程的质子传导通道。此外,复合膜的电池性能、机械性能、热稳定性和抗氧化性都有很大程度的提高,有望用于DMFC。 在第四部分工作中,我们以聚酯纤维为基底,利用GO与SPES之间的氢键相互作用,使两者通过层层组装的方式在聚酯纤维的表面形成GO与SPES组装的多层结构,每一层中磺酸基都沿纤维轴向排列,这为质子的传导提供了长程的质子传导通道,促进质子的快速传导。将SPES与多层组装聚酯纤维复合,并对复合膜的结构和性质进行了表征。结果表明:随着组装层的增加复合膜中的质子传导率逐渐升高。同时复合膜的机械性能和阻醇性也比纯SPES膜有明显的提高。实验证明层层结构修饰的纤维能构筑更多长程质子传输通道。
文内图片:所示,反应物H2和O2在扩散层扩散;反应气体到达催化层后被催
图片说明:所示,反应物H2和O2在扩散层扩散;反应气体到达催化层后被催
[Abstract]:The core components of the proton exchange membrane (PEM) as the proton exchange membrane fuel cell (PEMFC) largely determine the performance of the PEMFC. The PEM, which is now widely used in PEMFC, is a Nafion membrane produced by DuPont. while the nafion membrane has the advantages of high proton conduction and good chemical stability, the proton conduction of the nafion membrane strongly depends on the water content in the membrane, the performance of the membrane drops sharply at the high temperature, the fuel penetration is serious when the pem is a direct methanol fuel cell (dmfc), and the production process of the nafion is complex, And the cost is high. These problems are important factors that affect the wide application of Nafion. Sulfonated aromatic polyelectrolytes have been favored by scientific research and energy development agencies in recent PEM studies due to good mechanical properties, chemical stability and thermal stability, in particular less than Nafion's methanol penetration and production costs. We know that the better the proton conduction in the PEM is in the hydrophilic region of the membrane, the better the continuity of the hydrophilic region is, the better the proton conduction. In the sulfonated random copolymer film, the sulfonic acid resin aggregates to form a large ion cluster, and the relative distance between the hydrophilic regions is large, so that the protons cannot be rapidly conducted in such a structure. In order to obtain a PEM with a good comprehensive performance and a continuous proton transfer channel, many methods are used to prepare the modified PEM. In this paper, we use the sulfonated aromatic polyelectrolytes as the matrix to construct a series of composite proton exchange membrane with continuous ion cluster network and long-range proton transport channel with different methods. Material. The specific work is divided into four parts in that first part of the work, we use the method of in situ polymerization to introduce a polyisopropylamide (PNIPAm) with a large amount of amine bond into the random copolymerization SPI In the matrix, a series of SPI-cPNIPAm semi-interpenetrating network PEM with different PNIPAm content is prepared. The hydrogen bonding phase and the semi-interpenetrating three-dimensional network structure of the amine bond in the PNIPAm and the sulfonic acid groups in the SPI can be used to adjust the microstructure of the composite membrane. And when the molar ratio of the sulfonic acid group and the melamine bond is 1:1, the size of the ion cluster in the SPI-20%-cPNIPAm membrane sample is the smallest, the distribution is uniform and continuous, the channel favorable for proton conduction is formed, the proton conduction of the sample membrane is twice the pure SPI film at the time of 25oC, and the energy density of the battery is increased to 72 mW by the 44 mW cm2 of the pure film. cm2. The composite membrane also has good mechanical properties and heat In that second part of the work, three of the graphite oxide with different size were prepared from different size of graphite. The GO is combined with the SPI to investigate the size effect of GO to the microstructure of the SPI/ GO composite membrane. The effect of GO on the micro-structure and properties of the SPI matrix at the same content was found. Can influence the maximum. In the PEM with the minimum GO doping of 0.5 wt%, the ion cluster is reduced from 25 nm in the pure SPI film to 6 nm, the distribution is uniform and continuous, and the proton conduction is facilitated. At the same time, the proton conductivity of this membrane is higher than that of pure S at 25 oC. The mechanical properties, the anti-oxidation stability, the dimensional stability and the alcohol-resistance of the composite membrane are also different. The results show that the introduction of GO can adjust the micro-structure of the PEM and optimize the PEM. In the work of the third part, the coupling of the organic siloxane containing the nitrogen heterocyclic group and the sulfonic acid group is obtained by the reaction of the hydroxyl groups in the 8-hydroxy-1-5-sulfonate with the isocyanate in the 3-isocyanate-based propyltriethoxysilane. In the presence of a surfactant (templating agent), a sol-gel method is used to introduce the SiSQ into the SPI matrix, and a series of SPI-M containing different mesoporous siloxane (MsiSQ) doping amount is obtained. SiSQ composite membrane has been found to have a better compatibility between the MSiSQ phase and the SPI matrix, and the introduction of the sulfonic acid group reduces the sulfonic acid group in the SPI film by the doping component. The proton conductivity and alcohol resistance of the composite membrane with MSiSQ The amount is increased. When the MSiSQ content is 40% by weight, the proton conductivity of the composite membrane is 0.23 S cm-1 at 25 DEG C, the methanol permeability is 1.8 to 10 to 8 cm2/ S, the selectivity is 12.8 to 106 Sscm-3, which is improved compared with the pure film, respectively. 3,6,23 times. This is due mainly to: on the one hand, the interaction between the diatomic nitrogen atom in MSiSQ and the sulfonic acid group in the SPI causes the large-sized ion cluster in the SPI to be dispersed into smaller ion clusters, and a uniform continuous film is formed in the film. And on the other hand, the sulfonic acid group and the surfactant in the sulfonated organic siloxane are used for removing the surfactant, the sulfonic acid groups are collected in the mesoporous, and the long-range conduction of the protons is provided. in addition, the battery performance, the mechanical property, the thermal stability and the oxidation resistance of the composite membrane are greatly improved, in that work of the fourth part, we use the polyester fiber as the substrate, and use the hydrogen bond interaction between GO and SPES to form the multi-layer structure of GO and SPES assembly on the surface of the polyester fiber by layer-by-layer assembly, and the sulfonic acid in each layer the base is arranged axially along the fiber, which provides a long-range proton conduction path for the conduction of the protons, to promote the rapid conduction of the protons. The SPES is compounded with the multi-layer assembled polyester fiber, and the junction of the composite film The structure and properties of the composite film are characterized. The results show that with the increase of the assembly layer, the composite film The proton conductivity is gradually increased, and the mechanical property and the resistance of the composite membrane are also higher than that of the pure SP. The experimental results show that the layer-by-layer structure-modified fibers can be constructed
【学位授予单位】:东北师范大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TM911.4;O631.1

【参考文献】

相关期刊论文 前4条

1 侯明;衣宝廉;;燃料电池技术发展现状与展望[J];电化学;2012年01期

2 龚光明;吴俊涛;江雷;;静电纺丝法制备聚酰亚胺新型材料[J];化学进展;2011年04期

3 师奇松,于建香,顾克壮,马春宝,刘太奇;静电纺丝技术及其应用[J];化学世界;2005年05期

4 王诚;;燃料电池技术开发现状及发展趋势[J];新材料产业;2012年02期



本文编号:2511241

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2511241.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户92832***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com