基于模糊膜聚类的短期负荷预测和光伏发电预测
【图文】:
图 1.1 生物计算模型Fig.1.1 Biocomputing model统。近年来,依据生物细胞及其生并行性、非确定性等优点的膜计算型 P 系统等。P 系统的理论计算模图灵机的某些缺陷的可能性。膜计模、语言学、经济学等领域得到了,运用细胞型 P 系统和组织型 P
隐含层神经元之间的连接权值 W 为:11 12 121 22 21 2=nnl l lnw w ww w wWw w w 入层第 i 个神经元与隐含层第 j 个神经元的输入权值输出层神经元之间的连接权值β为:11 12 121 22 21 2=nnl l ln 含层第 j 个神经元与输出层第 k 个神经元之间的输出
【学位授予单位】:西华大学
【学位级别】:硕士
【学位授予年份】:2019
【分类号】:TM715;TM615
【相似文献】
相关期刊论文 前10条
1 李家璐;何剑军;张坤;刘敬诚;吕勃翰;;应对海量数据的超短期负荷预测在实时电力市场的应用研究[J];电力大数据;2019年12期
2 郑建柏;;基于朴素贝叶斯和支持向量机的短期负荷预测[J];电力安全技术;2016年12期
3 连楷敏;陈冬沣;肖建华;;基于气象信息因素修正的灰色短期负荷预测研究[J];自动化应用;2016年12期
4 林佳亮;李暖群;黄庆键;;基于支持向量机方法的短期负荷预测研究[J];自动化应用;2016年12期
5 黎强;;分类管理方法在短期负荷预测工作中的应用[J];农村电工;2017年04期
6 樊唯钦;张伟;李勇钢;王家武;;基于改进人体舒适指数的微电网超短期负荷预测[J];广东电力;2017年04期
7 黄小耘;欧阳卫年;吴树鸿;李高明;金鑫;杨少将;;实时电价条件下的短期负荷预测研究[J];自动化与仪器仪表;2016年05期
8 张超;陈晓英;焦建立;潘超;司玮玮;;电力系统超短期负荷预测方法及应用[J];硅谷;2014年20期
9 李真;;基于云计算的扩展短期负荷预测方法的研究[J];科技视界;2014年36期
10 梁静;瞿博阳;宋慧;刘巍;;电业超短期负荷预测仿真研究[J];计算机仿真;2015年07期
相关会议论文 前10条
1 辛忠良;杨耀杰;陈垒;苗X;李峙;郭红梅;;基于决策树的短期负荷预测技术研究[A];第三届智能电网会议论文集[C];2018年
2 朱桂华;赖晓平;云昌钦;;在线短期负荷预测方法的研究与应用[A];1995年中国控制会议论文集(上)[C];1995年
3 高荣;刘晓华;;基于小波变换的支持向量机短期负荷预测[A];第16届中国过程控制学术年会暨第4届全国故障诊断与安全性学术会议论文集[C];2005年
4 杜俊红;滕欢;滕福生;;在线超短期负荷预测的分析与应用研究[A];2006中国电力系统保护与控制学术研讨会论文集[C];2006年
5 胡宏;顾斌;蔡冬阳;马晓东;车伟;顾杨青;;基于大数据的分布式短期负荷预测及其架构设计[A];2016智能电网发展研讨会论文集[C];2016年
6 胡松峰;彭显刚;;电网短期负荷预测方法综述[A];武汉(南方九省)电工理论学会第22届学术年会、河南省电工技术学会年会论文集[C];2010年
7 姚宇臻;;采用决策树技术的短期及超短期负荷预测软件在福建电网的运用[A];福建省科学技术协会第七届学术年会分会场——提高水力发电技术 促进海西经济建设研讨会论文集[C];2007年
8 张博海;何星;章渊;;基于循环神经网络的电网短期负荷预测研究[A];第37届中国控制会议论文集(F)[C];2018年
9 谭洪艳;郭继平;陈飞;;基于径向基网络的燃气短期负荷预测[A];中国土木工程学会城市燃气分会输配专业委员会2005年会议论文集[C];2005年
10 李娟;蔡磊;管延文;刘文斌;;基于BP-CSO的燃气短期负荷预测[A];中国燃气运营与安全研讨会(第十届)暨中国土木工程学会燃气分会2019年学术年会论文集(上册)[C];2019年
相关重要报纸文章 前4条
1 通讯员池长斌;宁夏电网短期负荷预测西北第一[N];中国电力报;2011年
2 通讯员 池长斌;宁夏电力短期负荷预测保持领先[N];中国电力报;2011年
3 张树斌 范明;湖北电网中、短期负荷预测系统显神威[N];华中电力报;2001年
4 郭洪敏;重视清洁能源上网 呵护一方碧水蓝天[N];国家电网报;2009年
相关博士学位论文 前10条
1 程其云;基于数据挖掘的电力短期负荷预测模型及方法的研究[D];重庆大学;2004年
2 雷绍兰;基于电力负荷时间序列混沌特性的短期负荷预测方法研究[D];重庆大学;2005年
3 卢芸;短期电力负荷预测关键问题与方法的研究[D];沈阳工业大学;2007年
4 叶彬;混合智能建模技术及其在短期负荷预测中的应用研究[D];浙江大学;2006年
5 王志勇;数据挖掘方法在短期负荷预测中的应用研究[D];浙江大学;2007年
6 吴宏晓;基于软计算方法的电力系统负荷预测[D];上海交通大学;2007年
7 郑永康;相空间重构与支持向量机结合的短期负荷预测研究[D];西南交通大学;2008年
8 苏庆新;区域电力系统超短期负荷预测及网络建模分析[D];东华大学;2008年
9 郎坤;电力系统短期负荷预测及经济调度决策优化研究[D];大连理工大学;2016年
10 张国江;软计算方法和数据挖掘理论在电力系统负荷预测中的应用[D];浙江大学;2002年
相关硕士学位论文 前10条
1 杨云莹;基于模糊膜聚类的短期负荷预测和光伏发电预测[D];西华大学;2019年
2 熊晖;基于RBF神经网络与粒子滤波算法的用户电力短期负荷预测及其系统实现[D];中国科学院大学(中国科学院深圳先进技术研究院);2019年
3 潘可达;基于负荷模式提取的短期负荷预测[D];广东工业大学;2019年
4 席雅雯;融合历史数据和实时影响因素的精细化短期负荷预测[D];北京交通大学;2019年
5 张然然;非正常工况下火电机组短期负荷预测技术研究[D];华北电力大学;2019年
6 Desi Purwati;基于长短期记忆的短期负荷预测研究[D];华北电力大学(北京);2019年
7 孙海鹤;微电网短期负荷预测及优化调度研究[D];华北理工大学;2019年
8 张鹏翔;海上油田群电网短期负荷预测研究[D];西南石油大学;2018年
9 张书;基于函数型数据分析的短期电力负荷预测研究[D];厦门大学;2018年
10 薛琳;基于用电行为分析的低冗余特征配电网短期负荷预测研究[D];东北电力大学;2019年
,本文编号:2632470
本文链接:https://www.wllwen.com/kejilunwen/dianlilw/2632470.html